利用智慧城市数字双胞胎评估和预测城市集体热暴露

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiyu Pan, Dimitris Mavrokapnidis, Hoang T. Ly, Neda Mohammadi, John E. Taylor
{"title":"利用智慧城市数字双胞胎评估和预测城市集体热暴露","authors":"Xiyu Pan, Dimitris Mavrokapnidis, Hoang T. Ly, Neda Mohammadi, John E. Taylor","doi":"10.1038/s41598-024-59228-8","DOIUrl":null,"url":null,"abstract":"<p>Due to population growth, climate change, and the urban heat island effect, heat exposure is becoming an important issue faced by urban built environments. Heat exposure assessment is a prerequisite for mitigation measures to reduce the impact of heat exposure. However, there is limited research on urban heat exposure assessment approaches that provides fine-scale spatiotemporal heat exposure information, integrated with meteorological status and human collective exposure as they move about in cities, to enable proactive heat exposure mitigation measures. Smart city digital twins (SCDTs) provide a new potential avenue for addressing this gap, enabling fine spatiotemporal scales, human-infrastructure interaction modeling, and predictive and decision support capabilities. This study aims to develop and test an SCDT for collective urban heat exposure assessment and forecasting. Meteorological sensors and computer vision techniques were implemented in Columbus, Georgia, to acquire temperature, humidity, and passersby count data. These data were then integrated into a collective temperature humidity index. A time-series prediction model and a crowd simulation were employed to predict future short-term heat exposures based on the data accumulated by this SCDT and to support heat exposure mitigation efforts. The results demonstrate the potential of SCDT to enhance public safety by providing city officials with a tool for discovering, predicting, and, ultimately, mitigating community exposure to extreme heat.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"82 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing and forecasting collective urban heat exposure with smart city digital twins\",\"authors\":\"Xiyu Pan, Dimitris Mavrokapnidis, Hoang T. Ly, Neda Mohammadi, John E. Taylor\",\"doi\":\"10.1038/s41598-024-59228-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to population growth, climate change, and the urban heat island effect, heat exposure is becoming an important issue faced by urban built environments. Heat exposure assessment is a prerequisite for mitigation measures to reduce the impact of heat exposure. However, there is limited research on urban heat exposure assessment approaches that provides fine-scale spatiotemporal heat exposure information, integrated with meteorological status and human collective exposure as they move about in cities, to enable proactive heat exposure mitigation measures. Smart city digital twins (SCDTs) provide a new potential avenue for addressing this gap, enabling fine spatiotemporal scales, human-infrastructure interaction modeling, and predictive and decision support capabilities. This study aims to develop and test an SCDT for collective urban heat exposure assessment and forecasting. Meteorological sensors and computer vision techniques were implemented in Columbus, Georgia, to acquire temperature, humidity, and passersby count data. These data were then integrated into a collective temperature humidity index. A time-series prediction model and a crowd simulation were employed to predict future short-term heat exposures based on the data accumulated by this SCDT and to support heat exposure mitigation efforts. The results demonstrate the potential of SCDT to enhance public safety by providing city officials with a tool for discovering, predicting, and, ultimately, mitigating community exposure to extreme heat.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-59228-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-59228-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于人口增长、气候变化和城市热岛效应,热暴露正成为城市建筑环境面临的一个重要问题。热暴露评估是采取减缓措施以减少热暴露影响的先决条件。然而,目前有关城市热暴露评估方法的研究还很有限,这种方法可以提供精细尺度的时空热暴露信息,并与气象状态和人类在城市中移动时的集体暴露信息相结合,从而采取积极的热暴露减缓措施。智慧城市数字孪生(SCDTs)为解决这一差距提供了新的潜在途径,可实现精细时空尺度、人与基础设施交互建模以及预测和决策支持功能。本研究旨在开发和测试用于城市热暴露集体评估和预测的 SCDT。在佐治亚州哥伦布市采用气象传感器和计算机视觉技术获取温度、湿度和路人计数数据。然后将这些数据整合到一个集体温度湿度指数中。根据该 SCDT 积累的数据,采用时间序列预测模型和人群模拟来预测未来的短期热暴露,并支持热暴露缓解工作。研究结果表明,SCDT 为城市官员提供了发现、预测并最终减轻社区极端高温暴露的工具,具有增强公共安全的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing and forecasting collective urban heat exposure with smart city digital twins

Assessing and forecasting collective urban heat exposure with smart city digital twins

Due to population growth, climate change, and the urban heat island effect, heat exposure is becoming an important issue faced by urban built environments. Heat exposure assessment is a prerequisite for mitigation measures to reduce the impact of heat exposure. However, there is limited research on urban heat exposure assessment approaches that provides fine-scale spatiotemporal heat exposure information, integrated with meteorological status and human collective exposure as they move about in cities, to enable proactive heat exposure mitigation measures. Smart city digital twins (SCDTs) provide a new potential avenue for addressing this gap, enabling fine spatiotemporal scales, human-infrastructure interaction modeling, and predictive and decision support capabilities. This study aims to develop and test an SCDT for collective urban heat exposure assessment and forecasting. Meteorological sensors and computer vision techniques were implemented in Columbus, Georgia, to acquire temperature, humidity, and passersby count data. These data were then integrated into a collective temperature humidity index. A time-series prediction model and a crowd simulation were employed to predict future short-term heat exposures based on the data accumulated by this SCDT and to support heat exposure mitigation efforts. The results demonstrate the potential of SCDT to enhance public safety by providing city officials with a tool for discovering, predicting, and, ultimately, mitigating community exposure to extreme heat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信