{"title":"横纹木莲对铅应激的反应:对抗氧化防御机制和黄酮类化合物变化的认识","authors":"Reyhaneh Danaeipour, Mohsen Sharifi, Azam Noori","doi":"10.1071/fp23236","DOIUrl":null,"url":null,"abstract":"<p>Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of <i>Scrophularia striata</i> exposed to 250 mg L<sup>−1</sup> Pb (NO<sub>3</sub>)<sub>2</sub> in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in the roots were significantly increased and reached their highest value at 72 h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H<sub>2</sub>O<sub>2</sub> content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of <i>S. striata</i> progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, <i>S. striata</i> stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses to lead stress in Scrophularia striata: insights into antioxidative defence mechanisms and changes in flavonoids profile\",\"authors\":\"Reyhaneh Danaeipour, Mohsen Sharifi, Azam Noori\",\"doi\":\"10.1071/fp23236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of <i>Scrophularia striata</i> exposed to 250 mg L<sup>−1</sup> Pb (NO<sub>3</sub>)<sub>2</sub> in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in the roots were significantly increased and reached their highest value at 72 h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H<sub>2</sub>O<sub>2</sub> content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of <i>S. striata</i> progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, <i>S. striata</i> stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/fp23236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp23236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Responses to lead stress in Scrophularia striata: insights into antioxidative defence mechanisms and changes in flavonoids profile
Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of Scrophularia striata exposed to 250 mg L−1 Pb (NO3)2 in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H2O2) levels in the roots were significantly increased and reached their highest value at 72 h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H2O2 content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of S. striata progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, S. striata stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.