Matthew J. Burfeindt;Hatim F. Alqadah;Scott Ziegler
{"title":"利用单个发射器和接收器进行相位编码线性采样法成像的实验性研究","authors":"Matthew J. Burfeindt;Hatim F. Alqadah;Scott Ziegler","doi":"10.1109/OJAP.2024.3393717","DOIUrl":null,"url":null,"abstract":"The phase-encoded linear sampling method (PE-LSM) is an inverse scattering technique for reconstructing the shape of a conducting target from scattered electric fields. It is a variant of the well-known linear sampling method (LSM), which solves the nonlinear shape reconstruction problem using linear optimization. The PE-LSM mitigates the primary obstacle to practical imaging via LSM-based processing – its need for copious multistatic-multiview transmit-receive channels. In this study, we evaluate the PE-LSM using experimental data. We collect synthetic aperture data in an anechoic chamber using only a single transmit-receive channel. With the aid of a monostatic-to-multistatic transform, we generate reconstructions of each target via the PE-LSM. The results evince significant improvements in fidelity to the true target geometries compared to imagery generated by both conventional LSM processing and a conventional backprojection-based radar approach.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 4","pages":"942-957"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508577","citationCount":"0","resultStr":"{\"title\":\"Experimental Phase-Encoded Linear Sampling Method Imaging With a Single Transmitter and Receiver\",\"authors\":\"Matthew J. Burfeindt;Hatim F. Alqadah;Scott Ziegler\",\"doi\":\"10.1109/OJAP.2024.3393717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase-encoded linear sampling method (PE-LSM) is an inverse scattering technique for reconstructing the shape of a conducting target from scattered electric fields. It is a variant of the well-known linear sampling method (LSM), which solves the nonlinear shape reconstruction problem using linear optimization. The PE-LSM mitigates the primary obstacle to practical imaging via LSM-based processing – its need for copious multistatic-multiview transmit-receive channels. In this study, we evaluate the PE-LSM using experimental data. We collect synthetic aperture data in an anechoic chamber using only a single transmit-receive channel. With the aid of a monostatic-to-multistatic transform, we generate reconstructions of each target via the PE-LSM. The results evince significant improvements in fidelity to the true target geometries compared to imagery generated by both conventional LSM processing and a conventional backprojection-based radar approach.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"5 4\",\"pages\":\"942-957\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508577\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508577/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508577/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Experimental Phase-Encoded Linear Sampling Method Imaging With a Single Transmitter and Receiver
The phase-encoded linear sampling method (PE-LSM) is an inverse scattering technique for reconstructing the shape of a conducting target from scattered electric fields. It is a variant of the well-known linear sampling method (LSM), which solves the nonlinear shape reconstruction problem using linear optimization. The PE-LSM mitigates the primary obstacle to practical imaging via LSM-based processing – its need for copious multistatic-multiview transmit-receive channels. In this study, we evaluate the PE-LSM using experimental data. We collect synthetic aperture data in an anechoic chamber using only a single transmit-receive channel. With the aid of a monostatic-to-multistatic transform, we generate reconstructions of each target via the PE-LSM. The results evince significant improvements in fidelity to the true target geometries compared to imagery generated by both conventional LSM processing and a conventional backprojection-based radar approach.