{"title":"保持生物酶稳定性的优化纳米级矿化策略","authors":"Yingying Li, Jiahao Li, Jialiang Li, Yuntian Yan, Yan Zhao, Weiheng Kong, Fengli Qu","doi":"10.1007/s10876-024-02624-x","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional biomineralization strategies are constructed using microparticles, suffering the inhibition of protease bio-availability and required rigorous bio-evaluation. The use of nanomineralization technology could apply control over the size, shape, and composition of the materials and provide a steadier maintenance environment for the bio-enzyme. In this study, stable and nanoscale copper phosphate (Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) bio-nanomineralization materials were constructed to encapsulate free bio-enzyme. By optimizing the biomineralization process, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> was demonstrated to enable the facile coordination of various bio-enzymes (e.g., catalase or β-glucosidase) for efficient bio-enzyme transportation and maintaining the bio-enzyme activity in harsh condition. The current nanomineralization strategy could provide new ideas and methods for the development of biocatalysis, biosensing, biomedicine, and other related fields.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 6","pages":"1787 - 1796"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Nanoscale Mineralization Strategy for Maintaining Bio-enzymatic Stability\",\"authors\":\"Yingying Li, Jiahao Li, Jialiang Li, Yuntian Yan, Yan Zhao, Weiheng Kong, Fengli Qu\",\"doi\":\"10.1007/s10876-024-02624-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional biomineralization strategies are constructed using microparticles, suffering the inhibition of protease bio-availability and required rigorous bio-evaluation. The use of nanomineralization technology could apply control over the size, shape, and composition of the materials and provide a steadier maintenance environment for the bio-enzyme. In this study, stable and nanoscale copper phosphate (Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) bio-nanomineralization materials were constructed to encapsulate free bio-enzyme. By optimizing the biomineralization process, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> was demonstrated to enable the facile coordination of various bio-enzymes (e.g., catalase or β-glucosidase) for efficient bio-enzyme transportation and maintaining the bio-enzyme activity in harsh condition. The current nanomineralization strategy could provide new ideas and methods for the development of biocatalysis, biosensing, biomedicine, and other related fields.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 6\",\"pages\":\"1787 - 1796\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02624-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02624-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Optimized Nanoscale Mineralization Strategy for Maintaining Bio-enzymatic Stability
Conventional biomineralization strategies are constructed using microparticles, suffering the inhibition of protease bio-availability and required rigorous bio-evaluation. The use of nanomineralization technology could apply control over the size, shape, and composition of the materials and provide a steadier maintenance environment for the bio-enzyme. In this study, stable and nanoscale copper phosphate (Cu3(PO4)2) bio-nanomineralization materials were constructed to encapsulate free bio-enzyme. By optimizing the biomineralization process, Cu3(PO4)2 was demonstrated to enable the facile coordination of various bio-enzymes (e.g., catalase or β-glucosidase) for efficient bio-enzyme transportation and maintaining the bio-enzyme activity in harsh condition. The current nanomineralization strategy could provide new ideas and methods for the development of biocatalysis, biosensing, biomedicine, and other related fields.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.