{"title":"非线性弹性波的散射和刚度","authors":"Dongbing Zha","doi":"10.1007/s00526-024-02736-2","DOIUrl":null,"url":null,"abstract":"<p>For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering and rigidity for nonlinear elastic waves\",\"authors\":\"Dongbing Zha\",\"doi\":\"10.1007/s00526-024-02736-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02736-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02736-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
对于满足空条件的三维各向同性、均质和超弹性材料的非线性弹性波方程的 Cauchy 问题,Agemi (Invent Math 142:225-250, 2000) 和 Sideris (Ann Math 151:849-874, 2000) 分别证明了小初始数据下经典解的全局存在性。在本文中,我们将考虑全局解的渐近行为。我们首先证明了全局解将会散射,即随着时间趋向无穷大,全局解将在能量意义上收敛于线性弹性波方程的某个解。我们还证明了以下刚性结果:如果散射数据消失,那么全局解也将同理消失。系统的变分结构将在我们的论证中发挥关键作用。
Scattering and rigidity for nonlinear elastic waves
For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.