利用形式化自动机的层次结构比较各主要过渡时期的认知情况

Colin Klein, Andrew B. Barron
{"title":"利用形式化自动机的层次结构比较各主要过渡时期的认知情况","authors":"Colin Klein, Andrew B. Barron","doi":"10.1002/wcs.1680","DOIUrl":null,"url":null,"abstract":"The evolution of cognition can be understood in terms of a few <jats:italic>major transitions</jats:italic>—changes in the computational architecture of nervous systems that changed what cognitive capacities could be evolved by downstream lineages. We demonstrate how the idea of a major cognitive transition can be modeled in terms of where a system's effective computational architecture falls on the well‐studied hierarchy of formal automata (HFA). We then use recent work connecting artificial neural networks to the HFA, which provides a way to make the structure‐architecture link in natural systems. We conclude with reflections on the power and the challenges of traditional thinking when applied to neural architectures.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Cognitive Biology &gt; Evolutionary Roots of Cognition</jats:list-item> <jats:list-item>Psychology &gt; Comparative</jats:list-item> <jats:list-item>Philosophy &gt; Foundations of Cognitive Science</jats:list-item> </jats:list>","PeriodicalId":501132,"journal":{"name":"WIREs Cognitive Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing cognition across major transitions using the hierarchy of formal automata\",\"authors\":\"Colin Klein, Andrew B. Barron\",\"doi\":\"10.1002/wcs.1680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of cognition can be understood in terms of a few <jats:italic>major transitions</jats:italic>—changes in the computational architecture of nervous systems that changed what cognitive capacities could be evolved by downstream lineages. We demonstrate how the idea of a major cognitive transition can be modeled in terms of where a system's effective computational architecture falls on the well‐studied hierarchy of formal automata (HFA). We then use recent work connecting artificial neural networks to the HFA, which provides a way to make the structure‐architecture link in natural systems. We conclude with reflections on the power and the challenges of traditional thinking when applied to neural architectures.This article is categorized under:<jats:list list-type=\\\"simple\\\"> <jats:list-item>Cognitive Biology &gt; Evolutionary Roots of Cognition</jats:list-item> <jats:list-item>Psychology &gt; Comparative</jats:list-item> <jats:list-item>Philosophy &gt; Foundations of Cognitive Science</jats:list-item> </jats:list>\",\"PeriodicalId\":501132,\"journal\":{\"name\":\"WIREs Cognitive Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Cognitive Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wcs.1680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wcs.1680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知的进化可以从几个主要的转变来理解--神经系统计算架构的变化改变了认知能力的进化方向。我们展示了如何根据一个系统的有效计算架构在形式自动机层次结构(HFA)中的位置来模拟重大认知转变的概念。然后,我们利用最近将人工神经网络与 HFA 联系起来的研究成果,为在自然系统中建立结构与架构之间的联系提供了一种方法。最后,我们对传统思维应用于神经架构时的力量和挑战进行了反思:认知生物学 > 认知的进化根源 心理学 > 比较哲学 > 认知科学的基础
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing cognition across major transitions using the hierarchy of formal automata
The evolution of cognition can be understood in terms of a few major transitions—changes in the computational architecture of nervous systems that changed what cognitive capacities could be evolved by downstream lineages. We demonstrate how the idea of a major cognitive transition can be modeled in terms of where a system's effective computational architecture falls on the well‐studied hierarchy of formal automata (HFA). We then use recent work connecting artificial neural networks to the HFA, which provides a way to make the structure‐architecture link in natural systems. We conclude with reflections on the power and the challenges of traditional thinking when applied to neural architectures.This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Psychology > Comparative Philosophy > Foundations of Cognitive Science
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信