奇点范畴的湮没器和分解

Pub Date : 2024-04-23 DOI:10.1017/s001309152400018x
Özgür Esentepe, Ryo Takahashi
{"title":"奇点范畴的湮没器和分解","authors":"Özgür Esentepe, Ryo Takahashi","doi":"10.1017/s001309152400018x","DOIUrl":null,"url":null,"abstract":"Given any commutative Noetherian ring <jats:italic>R</jats:italic> and an element <jats:italic>x</jats:italic> in <jats:italic>R</jats:italic>, we consider the full subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline1.png\" /> <jats:tex-math>$\\mathsf{C}(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of its singularity category consisting of objects for which the morphism that is given by the multiplication by <jats:italic>x</jats:italic> is zero. Our main observation is that we can establish a relation between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline2.png\" /> <jats:tex-math>$\\mathsf{C}(x), \\mathsf{C}(y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline3.png\" /> <jats:tex-math>$\\mathsf{C}(xy)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any two ring elements <jats:italic>x</jats:italic> and <jats:italic>y</jats:italic>. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annihilators and decompositions of singularity categories\",\"authors\":\"Özgür Esentepe, Ryo Takahashi\",\"doi\":\"10.1017/s001309152400018x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any commutative Noetherian ring <jats:italic>R</jats:italic> and an element <jats:italic>x</jats:italic> in <jats:italic>R</jats:italic>, we consider the full subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400018X_inline1.png\\\" /> <jats:tex-math>$\\\\mathsf{C}(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of its singularity category consisting of objects for which the morphism that is given by the multiplication by <jats:italic>x</jats:italic> is zero. Our main observation is that we can establish a relation between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400018X_inline2.png\\\" /> <jats:tex-math>$\\\\mathsf{C}(x), \\\\mathsf{C}(y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400018X_inline3.png\\\" /> <jats:tex-math>$\\\\mathsf{C}(xy)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any two ring elements <jats:italic>x</jats:italic> and <jats:italic>y</jats:italic>. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s001309152400018x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定任何交换诺特环 R 和 R 中的元素 x,我们考虑其奇异性范畴的全子范畴 $\mathsf{C}(x)$ ,这个子范畴由 x 乘以的态量为零的对象组成。我们的主要观察结果是,对于任意两个环元素 x 和 y,我们可以在 $\mathsf{C}(x), \mathsf{C}(y)$ 和 $\mathsf{C}(xy)$ 之间建立一种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Annihilators and decompositions of singularity categories
Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信