{"title":"超曲面上的投影不变和仿射不变 PDEs","authors":"Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno","doi":"10.1017/s0013091524000233","DOIUrl":null,"url":null,"abstract":"In <jats:italic>Communications in Contemporary Mathematics</jats:italic>24 3, (2022),the authors have developed a method for constructing <jats:italic>G</jats:italic>-invariant partial differential equations (PDEs) imposed on hypersurfaces of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline1.png\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline2.png\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, under mild assumptions on the Lie group <jats:italic>G</jats:italic>. In the present paper, the method is applied to the case when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline3.png\"/> <jats:tex-math>$G=\\mathsf{PGL}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline4.png\"/> <jats:tex-math>$G=\\mathsf{Aff}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline5.png\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline6.png\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional projective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline7.png\"/> <jats:tex-math>$\\mathbb{P}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, affine <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline8.png\"/> <jats:tex-math>$\\mathbb{A}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with <jats:italic>n</jats:italic> independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of <jats:italic>trace-free cubic forms</jats:italic> in <jats:italic>n</jats:italic> variables with respect to the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline9.png\"/> <jats:tex-math>$\\mathsf{CO}(d,n-d)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of conformal transformations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline10.png\"/> <jats:tex-math>$\\mathbb{R}^{d,n-d}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projectively and affinely invariant PDEs on hypersurfaces\",\"authors\":\"Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno\",\"doi\":\"10.1017/s0013091524000233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In <jats:italic>Communications in Contemporary Mathematics</jats:italic>24 3, (2022),the authors have developed a method for constructing <jats:italic>G</jats:italic>-invariant partial differential equations (PDEs) imposed on hypersurfaces of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline1.png\\\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline2.png\\\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, under mild assumptions on the Lie group <jats:italic>G</jats:italic>. In the present paper, the method is applied to the case when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline3.png\\\"/> <jats:tex-math>$G=\\\\mathsf{PGL}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline4.png\\\"/> <jats:tex-math>$G=\\\\mathsf{Aff}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline5.png\\\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline6.png\\\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional projective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline7.png\\\"/> <jats:tex-math>$\\\\mathbb{P}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, affine <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline8.png\\\"/> <jats:tex-math>$\\\\mathbb{A}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with <jats:italic>n</jats:italic> independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of <jats:italic>trace-free cubic forms</jats:italic> in <jats:italic>n</jats:italic> variables with respect to the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline9.png\\\"/> <jats:tex-math>$\\\\mathsf{CO}(d,n-d)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of conformal transformations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline10.png\\\"/> <jats:tex-math>$\\\\mathbb{R}^{d,n-d}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000233\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000233","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在Communications in Contemporary Mathematics24 3, (2022)一文中,作者提出了一种方法,用于在对Lie群G的温和假设下,构造施加于$(n+1)$维均质空间$G/H$的超曲面上的G不变偏微分方程(PDEs)。本文将该方法分别应用于 $G=\mathsf{PGL}(n+1)$ (分别为 $G=\mathsf{Aff}(n+1)$ )和均相空间 $G/H$ 为 $(n+1)$ 维投影 $\mathbb{P}^{n+1}$ (分别为仿射 $\mathbb{A}^{n+1}$ )空间的情况。本文的主要结果是,具有 n 个独立未知变量的投影或仿射不变 PDE 与 n 变量无迹三次方形式空间的不变超曲面一一对应,且与 $\mathbb{R}^{d,n-d}$ 的共形变换组 $\mathsf{CO}(d,n-d)$ 有关。
Projectively and affinely invariant PDEs on hypersurfaces
In Communications in Contemporary Mathematics24 3, (2022),the authors have developed a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces of an $(n+1)$-dimensional homogeneous space $G/H$, under mild assumptions on the Lie group G. In the present paper, the method is applied to the case when $G=\mathsf{PGL}(n+1)$ (respectively, $G=\mathsf{Aff}(n+1)$) and the homogeneous space $G/H$ is the $(n+1)$-dimensional projective $\mathbb{P}^{n+1}$ (respectively, affine $\mathbb{A}^{n+1}$) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in n variables with respect to the group $\mathsf{CO}(d,n-d)$ of conformal transformations of $\mathbb{R}^{d,n-d}$.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.