超曲面上的投影不变和仿射不变 PDEs

Pub Date : 2024-04-25 DOI:10.1017/s0013091524000233
Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno
{"title":"超曲面上的投影不变和仿射不变 PDEs","authors":"Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno","doi":"10.1017/s0013091524000233","DOIUrl":null,"url":null,"abstract":"In <jats:italic>Communications in Contemporary Mathematics</jats:italic>24 3, (2022),the authors have developed a method for constructing <jats:italic>G</jats:italic>-invariant partial differential equations (PDEs) imposed on hypersurfaces of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline1.png\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline2.png\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, under mild assumptions on the Lie group <jats:italic>G</jats:italic>. In the present paper, the method is applied to the case when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline3.png\"/> <jats:tex-math>$G=\\mathsf{PGL}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline4.png\"/> <jats:tex-math>$G=\\mathsf{Aff}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline5.png\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline6.png\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional projective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline7.png\"/> <jats:tex-math>$\\mathbb{P}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, affine <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline8.png\"/> <jats:tex-math>$\\mathbb{A}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with <jats:italic>n</jats:italic> independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of <jats:italic>trace-free cubic forms</jats:italic> in <jats:italic>n</jats:italic> variables with respect to the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline9.png\"/> <jats:tex-math>$\\mathsf{CO}(d,n-d)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of conformal transformations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000233_inline10.png\"/> <jats:tex-math>$\\mathbb{R}^{d,n-d}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projectively and affinely invariant PDEs on hypersurfaces\",\"authors\":\"Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno\",\"doi\":\"10.1017/s0013091524000233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In <jats:italic>Communications in Contemporary Mathematics</jats:italic>24 3, (2022),the authors have developed a method for constructing <jats:italic>G</jats:italic>-invariant partial differential equations (PDEs) imposed on hypersurfaces of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline1.png\\\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline2.png\\\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, under mild assumptions on the Lie group <jats:italic>G</jats:italic>. In the present paper, the method is applied to the case when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline3.png\\\"/> <jats:tex-math>$G=\\\\mathsf{PGL}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline4.png\\\"/> <jats:tex-math>$G=\\\\mathsf{Aff}(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the homogeneous space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline5.png\\\"/> <jats:tex-math>$G/H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline6.png\\\"/> <jats:tex-math>$(n+1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional projective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline7.png\\\"/> <jats:tex-math>$\\\\mathbb{P}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (respectively, affine <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline8.png\\\"/> <jats:tex-math>$\\\\mathbb{A}^{n+1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with <jats:italic>n</jats:italic> independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of <jats:italic>trace-free cubic forms</jats:italic> in <jats:italic>n</jats:italic> variables with respect to the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline9.png\\\"/> <jats:tex-math>$\\\\mathsf{CO}(d,n-d)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of conformal transformations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000233_inline10.png\\\"/> <jats:tex-math>$\\\\mathbb{R}^{d,n-d}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Communications in Contemporary Mathematics24 3, (2022)一文中,作者提出了一种方法,用于在对Lie群G的温和假设下,构造施加于$(n+1)$维均质空间$G/H$的超曲面上的G不变偏微分方程(PDEs)。本文将该方法分别应用于 $G=\mathsf{PGL}(n+1)$ (分别为 $G=\mathsf{Aff}(n+1)$ )和均相空间 $G/H$ 为 $(n+1)$ 维投影 $\mathbb{P}^{n+1}$ (分别为仿射 $\mathbb{A}^{n+1}$ )空间的情况。本文的主要结果是,具有 n 个独立未知变量的投影或仿射不变 PDE 与 n 变量无迹三次方形式空间的不变超曲面一一对应,且与 $\mathbb{R}^{d,n-d}$ 的共形变换组 $\mathsf{CO}(d,n-d)$ 有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Projectively and affinely invariant PDEs on hypersurfaces
In Communications in Contemporary Mathematics24 3, (2022),the authors have developed a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces of an $(n+1)$ -dimensional homogeneous space $G/H$ , under mild assumptions on the Lie group G. In the present paper, the method is applied to the case when $G=\mathsf{PGL}(n+1)$ (respectively, $G=\mathsf{Aff}(n+1)$ ) and the homogeneous space $G/H$ is the $(n+1)$ -dimensional projective $\mathbb{P}^{n+1}$ (respectively, affine $\mathbb{A}^{n+1}$ ) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in n variables with respect to the group $\mathsf{CO}(d,n-d)$ of conformal transformations of $\mathbb{R}^{d,n-d}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信