Sarah Nahle, Camille Lutet-Toti, Yuto Namikawa, Marie-Hélène Piet, Alice Brion, Sylvie Peyroche, Michio Suzuki, Frédéric Marin, Marthe Rousseau
{"title":"碳酸钙生物矿物质的有机基质能改善成骨细胞的矿化过程","authors":"Sarah Nahle, Camille Lutet-Toti, Yuto Namikawa, Marie-Hélène Piet, Alice Brion, Sylvie Peyroche, Michio Suzuki, Frédéric Marin, Marthe Rousseau","doi":"10.1007/s10126-024-10316-w","DOIUrl":null,"url":null,"abstract":"<div><p>Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, <i>Pinctada margaritifera</i> is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other <i>Pinctada</i> species (<i>Pinctada radiata</i>, <i>Pinctada maxima</i>, and <i>Pinctada fucata</i>) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the <i>Pinctada</i>-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the <i>Pinctada</i> genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the <i>Pinctada</i> genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO<sub>3</sub> biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Matrices of Calcium Carbonate Biominerals Improve Osteoblastic Mineralization\",\"authors\":\"Sarah Nahle, Camille Lutet-Toti, Yuto Namikawa, Marie-Hélène Piet, Alice Brion, Sylvie Peyroche, Michio Suzuki, Frédéric Marin, Marthe Rousseau\",\"doi\":\"10.1007/s10126-024-10316-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, <i>Pinctada margaritifera</i> is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other <i>Pinctada</i> species (<i>Pinctada radiata</i>, <i>Pinctada maxima</i>, and <i>Pinctada fucata</i>) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the <i>Pinctada</i>-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the <i>Pinctada</i> genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the <i>Pinctada</i> genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO<sub>3</sub> biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10316-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10316-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Organic Matrices of Calcium Carbonate Biominerals Improve Osteoblastic Mineralization
Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.