利用高斯协方差对多变量纵向结果和生存结果进行贝叶斯联合建模

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim
{"title":"利用高斯协方差对多变量纵向结果和生存结果进行贝叶斯联合建模","authors":"Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim","doi":"10.1093/biostatistics/kxae009","DOIUrl":null,"url":null,"abstract":"There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas\",\"authors\":\"Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim\",\"doi\":\"10.1093/biostatistics/kxae009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae009\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人们对使用联合模型分析纵向和生存数据越来越感兴趣。虽然随机效应模型已被广泛研究,但这些模型可能很难实现,而且固定效应回归参数必须以随机效应为条件进行解释。协方差为联合建模提供了一个有用的替代框架。使用协方差的一个好处是,实践者可以直接指定相关结果的边际模型。我们利用高斯协方差建立了一个联合模型,以描述多变量纵向结果和生存结果之间的关联。我们并没有像常见的那样在 copula 模型中使用非结构化的相关矩阵来描述依赖结构,而是提出了一种新颖的分解方法,允许从业人员施加结构(如自动回归),从而提高了中小样本量的效率,降低了计算复杂性。我们开发了一种马尔科夫链蒙特卡罗模型拟合程序,用于估算。我们通过模拟研究说明了该方法的价值,并展示了对国际乳腺癌研究小组试验中纵向生活质量和无病生存数据的真实数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas
There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信