{"title":"移动卫星通信网络的高效量子安全认证密钥交换方案","authors":"Dheerendra Mishra, Purva Rewal, Komal Pursharthi","doi":"10.1002/sat.1516","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The mobile satellite communication (MSC) system is a vital communication method in which mobile users and network control centers connect via satellites. Since the satellite's communication is wireless, communication security is a critical factor to ensure accountable communication. Key exchange and authentication (KEA) mechanism is widely used to achieve data security for data transmitted in an insecure or open channel. Different authentication systems are suggested in the last many years to establish safe communication, whereas most existing security protocols are based on factorization or discrete logarithm. However, these systems are no longer reliable by Shor's algorithm as any discrete logarithm and factorization can be resolved in polynomial time on quantum computers. Thus, developing a quantum secure KEA protocol for MSC systems is necessary. In this direction, recently a ring learning with an error-based KEA technique is proposed to ensure a quantum-safe environment. This scheme is quantum-safe and satisfies desirable security attributes but has low efficiency in computation and communication. Moreover, establishing a secure session requires six communications among involved entities. As a result, replay attack detection at an early stage is not possible for the central authority (server), which could delay the server response, and the adversary gets the advantage of drawing a denial of service scenario for authorized entities. We propose a lattice-based KEA protocol for the MSC system to improve computation, communication efficiency, and early-stage replay attack detection. The security analysis of the proposed scheme is presented in the random oracle model. Calculation of performance is also presented to observe advantages in computation and communication overhead.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 4","pages":"313-328"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and quantum-secure authenticated key exchange scheme for mobile satellite communication networks\",\"authors\":\"Dheerendra Mishra, Purva Rewal, Komal Pursharthi\",\"doi\":\"10.1002/sat.1516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The mobile satellite communication (MSC) system is a vital communication method in which mobile users and network control centers connect via satellites. Since the satellite's communication is wireless, communication security is a critical factor to ensure accountable communication. Key exchange and authentication (KEA) mechanism is widely used to achieve data security for data transmitted in an insecure or open channel. Different authentication systems are suggested in the last many years to establish safe communication, whereas most existing security protocols are based on factorization or discrete logarithm. However, these systems are no longer reliable by Shor's algorithm as any discrete logarithm and factorization can be resolved in polynomial time on quantum computers. Thus, developing a quantum secure KEA protocol for MSC systems is necessary. In this direction, recently a ring learning with an error-based KEA technique is proposed to ensure a quantum-safe environment. This scheme is quantum-safe and satisfies desirable security attributes but has low efficiency in computation and communication. Moreover, establishing a secure session requires six communications among involved entities. As a result, replay attack detection at an early stage is not possible for the central authority (server), which could delay the server response, and the adversary gets the advantage of drawing a denial of service scenario for authorized entities. We propose a lattice-based KEA protocol for the MSC system to improve computation, communication efficiency, and early-stage replay attack detection. The security analysis of the proposed scheme is presented in the random oracle model. Calculation of performance is also presented to observe advantages in computation and communication overhead.</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"42 4\",\"pages\":\"313-328\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1516\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1516","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Efficient and quantum-secure authenticated key exchange scheme for mobile satellite communication networks
The mobile satellite communication (MSC) system is a vital communication method in which mobile users and network control centers connect via satellites. Since the satellite's communication is wireless, communication security is a critical factor to ensure accountable communication. Key exchange and authentication (KEA) mechanism is widely used to achieve data security for data transmitted in an insecure or open channel. Different authentication systems are suggested in the last many years to establish safe communication, whereas most existing security protocols are based on factorization or discrete logarithm. However, these systems are no longer reliable by Shor's algorithm as any discrete logarithm and factorization can be resolved in polynomial time on quantum computers. Thus, developing a quantum secure KEA protocol for MSC systems is necessary. In this direction, recently a ring learning with an error-based KEA technique is proposed to ensure a quantum-safe environment. This scheme is quantum-safe and satisfies desirable security attributes but has low efficiency in computation and communication. Moreover, establishing a secure session requires six communications among involved entities. As a result, replay attack detection at an early stage is not possible for the central authority (server), which could delay the server response, and the adversary gets the advantage of drawing a denial of service scenario for authorized entities. We propose a lattice-based KEA protocol for the MSC system to improve computation, communication efficiency, and early-stage replay attack detection. The security analysis of the proposed scheme is presented in the random oracle model. Calculation of performance is also presented to observe advantages in computation and communication overhead.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols