{"title":"用湍流激光雷达探测开尔文-赫尔姆霍兹波:I-BSE-4 激光雷达","authors":"I. A. Razenkov","doi":"10.1134/S1024856023700070","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index <span>\\(C_{n}^{2}\\)</span> shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar\",\"authors\":\"I. A. Razenkov\",\"doi\":\"10.1134/S1024856023700070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index <span>\\\\(C_{n}^{2}\\\\)</span> shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856023700070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856023700070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar
Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index \(C_{n}^{2}\) shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.