用湍流激光雷达探测开尔文-赫尔姆霍兹波:I-BSE-4 激光雷达

IF 0.9 Q4 OPTICS
I. A. Razenkov
{"title":"用湍流激光雷达探测开尔文-赫尔姆霍兹波:I-BSE-4 激光雷达","authors":"I. A. Razenkov","doi":"10.1134/S1024856023700070","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index <span>\\(C_{n}^{2}\\)</span> shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar\",\"authors\":\"I. A. Razenkov\",\"doi\":\"10.1134/S1024856023700070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index <span>\\\\(C_{n}^{2}\\\\)</span> shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856023700070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856023700070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 大气波与大气边界层中发生的交换过程的关系日益受到关注。本文介绍了湍流激光雷达在大气稳定分层边界层探测中尺度开尔文-赫尔姆霍兹波的实验结果。本文介绍了长期在森林草原上空工作的 BSE-4 激光雷达(532 nm)的测量数据。在大多数情况下,大气波在傍晚和夜间从陆地到 600 米的高度范围内被观测到,此时表层空气中的理查森数不超过临界值 +1/4。对折射率 \(C_{n}^{2}\)结构特征的时间序列进行的傅里叶分析表明,大气边界层的波过程频谱由一组具有不同振荡频率的单色波组成。在观测过程中,波的周期从 1 分钟到 11 分钟不等,振幅从 20 米到 300 米不等。一些单色波的消失被新波浪的出现所补偿。小尺度湍流的产生过程贯穿开尔文-赫尔姆霍兹波的整个生命周期。实验结果表明,湍流激光雷达是确保远程探测和观测大气波的灵敏设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar

Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar

Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar

Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by the BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index \(C_{n}^{2}\) shows that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The experimental results indicate that the turbulent lidar is a sensitive device ensuring remote detection and observation of atmospheric waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信