苯基三甲基铵作为稳定的甲脒基准二维过氧化物太阳能电池的层间垫片

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bumjin Gil, Jinhyun Kim, Byungwoo Park
{"title":"苯基三甲基铵作为稳定的甲脒基准二维过氧化物太阳能电池的层间垫片","authors":"Bumjin Gil,&nbsp;Jinhyun Kim,&nbsp;Byungwoo Park","doi":"10.1007/s13391-024-00497-w","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-2D perovskite materials possess great potential in improving the stability of perovskite solar cells due to their superior chemical and structural stableness compared to 3D counterparts. Here, commonly-used 3D formamidinum lead iodide (FAPbI<sub>3</sub>) perovskite is alloyed by addition of quaternary cation phenyltrimethylammonium (PTMA) up to 33% (<i>n</i> = 5), which forms quasi-2D perovskite phase that acts beneficial to charge transport and stability. Since the detailed structural analyses regarding this quaternary ammonium salt is still lacking, we attempt to provide how the presence of 2D perovskite affects the crystal structure based on x-ray diffraction techniques. It is shown that PTMA cations directs FAPbI<sub>3</sub> to have textured orientation and reduced strains. This led to enhanced extraction of photogenerated carriers and reduced defects, making it promising material for solar cell applications. The champion device remains stable under 60 °C or 1 sun for 700 h, demonstrating its potential for optoelectronic devices requiring long-term stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"791 - 798"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenyltrimethylammonium as an Interlayer Spacer for Stable Formamidinium-Based Quasi-2D Perovskite Solar Cells\",\"authors\":\"Bumjin Gil,&nbsp;Jinhyun Kim,&nbsp;Byungwoo Park\",\"doi\":\"10.1007/s13391-024-00497-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quasi-2D perovskite materials possess great potential in improving the stability of perovskite solar cells due to their superior chemical and structural stableness compared to 3D counterparts. Here, commonly-used 3D formamidinum lead iodide (FAPbI<sub>3</sub>) perovskite is alloyed by addition of quaternary cation phenyltrimethylammonium (PTMA) up to 33% (<i>n</i> = 5), which forms quasi-2D perovskite phase that acts beneficial to charge transport and stability. Since the detailed structural analyses regarding this quaternary ammonium salt is still lacking, we attempt to provide how the presence of 2D perovskite affects the crystal structure based on x-ray diffraction techniques. It is shown that PTMA cations directs FAPbI<sub>3</sub> to have textured orientation and reduced strains. This led to enhanced extraction of photogenerated carriers and reduced defects, making it promising material for solar cell applications. The champion device remains stable under 60 °C or 1 sun for 700 h, demonstrating its potential for optoelectronic devices requiring long-term stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 6\",\"pages\":\"791 - 798\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00497-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00497-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准二维透辉石材料具有优于三维透辉石材料的化学和结构稳定性,因此在提高透辉石太阳能电池的稳定性方面具有巨大潜力。在这里,通过添加33%(n = 5)的季阳离子苯基三甲基铵(PTMA),将常用的三维甲酰胺碘化铅(FAPbI3)包晶石合金化,从而形成有利于电荷传输和稳定性的准二维包晶石相。由于目前还缺乏对这种季铵盐的详细结构分析,我们试图根据 X 射线衍射技术来说明二维包晶的存在如何影响晶体结构。结果表明,PTMA 阳离子使 FAPbI3 具有纹理取向并降低了应变。这提高了光生载流子的萃取率,减少了缺陷,使其成为太阳能电池应用的理想材料。冠军器件在 60 °C 或 1 个太阳下可稳定工作 700 小时,这证明了它在需要长期稳定性的光电器件方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phenyltrimethylammonium as an Interlayer Spacer for Stable Formamidinium-Based Quasi-2D Perovskite Solar Cells

Phenyltrimethylammonium as an Interlayer Spacer for Stable Formamidinium-Based Quasi-2D Perovskite Solar Cells

Quasi-2D perovskite materials possess great potential in improving the stability of perovskite solar cells due to their superior chemical and structural stableness compared to 3D counterparts. Here, commonly-used 3D formamidinum lead iodide (FAPbI3) perovskite is alloyed by addition of quaternary cation phenyltrimethylammonium (PTMA) up to 33% (n = 5), which forms quasi-2D perovskite phase that acts beneficial to charge transport and stability. Since the detailed structural analyses regarding this quaternary ammonium salt is still lacking, we attempt to provide how the presence of 2D perovskite affects the crystal structure based on x-ray diffraction techniques. It is shown that PTMA cations directs FAPbI3 to have textured orientation and reduced strains. This led to enhanced extraction of photogenerated carriers and reduced defects, making it promising material for solar cell applications. The champion device remains stable under 60 °C or 1 sun for 700 h, demonstrating its potential for optoelectronic devices requiring long-term stability.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信