{"title":"四旋翼无人机团队的弹性覆盖:理论与实验","authors":"Hamed Rezaee;Erica Salvato;Gianfranco Fenu;Thomas Parisini","doi":"10.1109/TCST.2024.3389350","DOIUrl":null,"url":null,"abstract":"We address the problem of coverage of a given environment by a team of quadrotor unmanned aerial vehicles (UAVs) with limited sensing capabilities. The objective is to develop a control strategy for spreading the UAVs across the environment for monitoring purposes. We do not assume the availability of a central controller for UAV coordination, and the UAVs cooperate by exchanging information via a communication network. By considering possible cyberattacks acting on the UAV network, we propose a resilient distributed control scheme such that the UAVs locally compute their position set points to achieve an overall coverage configuration despite the malicious behaviors of some attacked UAVs. By relying on the Voronoi diagram-based coverage technique, we first address possible attack scenarios that can deteriorate a covering mission. Then, we consider a generalized Voronoi diagram-based coverage scheme that shows resilience against cyberattack scenarios. We also design an adaptive control strategy ensuring the convergence of the UAVs to a desired coverage configuration, whereas the UAV parameters (inertial matrix, drag coefficient, and so on) are not known. Mathematical analysis, simulation, and real-world experimental results show the effectiveness of the proposed distributed resilient control scheme.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2009-2022"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient Coverage by Teams of Quadrotor UAVs: Theory and Experiments\",\"authors\":\"Hamed Rezaee;Erica Salvato;Gianfranco Fenu;Thomas Parisini\",\"doi\":\"10.1109/TCST.2024.3389350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of coverage of a given environment by a team of quadrotor unmanned aerial vehicles (UAVs) with limited sensing capabilities. The objective is to develop a control strategy for spreading the UAVs across the environment for monitoring purposes. We do not assume the availability of a central controller for UAV coordination, and the UAVs cooperate by exchanging information via a communication network. By considering possible cyberattacks acting on the UAV network, we propose a resilient distributed control scheme such that the UAVs locally compute their position set points to achieve an overall coverage configuration despite the malicious behaviors of some attacked UAVs. By relying on the Voronoi diagram-based coverage technique, we first address possible attack scenarios that can deteriorate a covering mission. Then, we consider a generalized Voronoi diagram-based coverage scheme that shows resilience against cyberattack scenarios. We also design an adaptive control strategy ensuring the convergence of the UAVs to a desired coverage configuration, whereas the UAV parameters (inertial matrix, drag coefficient, and so on) are not known. Mathematical analysis, simulation, and real-world experimental results show the effectiveness of the proposed distributed resilient control scheme.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 6\",\"pages\":\"2009-2022\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508966/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508966/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Resilient Coverage by Teams of Quadrotor UAVs: Theory and Experiments
We address the problem of coverage of a given environment by a team of quadrotor unmanned aerial vehicles (UAVs) with limited sensing capabilities. The objective is to develop a control strategy for spreading the UAVs across the environment for monitoring purposes. We do not assume the availability of a central controller for UAV coordination, and the UAVs cooperate by exchanging information via a communication network. By considering possible cyberattacks acting on the UAV network, we propose a resilient distributed control scheme such that the UAVs locally compute their position set points to achieve an overall coverage configuration despite the malicious behaviors of some attacked UAVs. By relying on the Voronoi diagram-based coverage technique, we first address possible attack scenarios that can deteriorate a covering mission. Then, we consider a generalized Voronoi diagram-based coverage scheme that shows resilience against cyberattack scenarios. We also design an adaptive control strategy ensuring the convergence of the UAVs to a desired coverage configuration, whereas the UAV parameters (inertial matrix, drag coefficient, and so on) are not known. Mathematical analysis, simulation, and real-world experimental results show the effectiveness of the proposed distributed resilient control scheme.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.