部分数据一阶扰动双谐算子反边界值问题的稳定性估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Boya Liu
{"title":"部分数据一阶扰动双谐算子反边界值问题的稳定性估计","authors":"Boya Liu","doi":"10.1088/1361-6420/ad3be6","DOIUrl":null,"url":null,"abstract":"In this paper we study an inverse boundary value problem for the biharmonic operator with first order perturbation. Our geometric setting is that of a bounded simply connected domain in the Euclidean space of dimension three or higher. Assuming that the inaccessible portion of the boundary is flat, and we have knowledge of the Dirichlet-to-Neumann map on the complement, we prove logarithmic type stability estimates for both the first and the zeroth order perturbation of the biharmonic operator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability estimates for an inverse boundary value problem for biharmonic operators with first order perturbation from partial data\",\"authors\":\"Boya Liu\",\"doi\":\"10.1088/1361-6420/ad3be6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study an inverse boundary value problem for the biharmonic operator with first order perturbation. Our geometric setting is that of a bounded simply connected domain in the Euclidean space of dimension three or higher. Assuming that the inaccessible portion of the boundary is flat, and we have knowledge of the Dirichlet-to-Neumann map on the complement, we prove logarithmic type stability estimates for both the first and the zeroth order perturbation of the biharmonic operator.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad3be6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3be6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有一阶扰动的双谐波算子的逆边界值问题。我们的几何背景是欧几里得空间三维或更高维的有界简单连接域。假设边界的不可进入部分是平的,并且我们知道补集上的狄利克特到诺伊曼映射,我们证明了双谐算子的一阶和零阶扰动的对数型稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimates for an inverse boundary value problem for biharmonic operators with first order perturbation from partial data
In this paper we study an inverse boundary value problem for the biharmonic operator with first order perturbation. Our geometric setting is that of a bounded simply connected domain in the Euclidean space of dimension three or higher. Assuming that the inaccessible portion of the boundary is flat, and we have knowledge of the Dirichlet-to-Neumann map on the complement, we prove logarithmic type stability estimates for both the first and the zeroth order perturbation of the biharmonic operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信