M6 的稳健收益排名预测和投资组合优化

IF 7.1 2区 经济学 Q1 ECONOMICS
Hongfeng Ai , Chenning Liu , Peng Lin
{"title":"M6 的稳健收益排名预测和投资组合优化","authors":"Hongfeng Ai ,&nbsp;Chenning Liu ,&nbsp;Peng Lin","doi":"10.1016/j.ijforecast.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><div><span>The M6 competition aims to address challenging problems in stock returns ranking prediction and portfolio optimization. To tackle the volatility and low signal-to-noise ratio in the stock market, our team designs the overall solution from the robustness perspective. Regarding returns ranking prediction, we present the MultiTask </span>Deep Neural Network<span><span> with Denoising </span>Autoencoder<span><span> Enhancement (MT-DNN-DAE), which incorporates the self-supervised learning of DAE and jointly optimizes the multi-task loss. We propose Robust Feature Selection (RFS) to identify features with a high signal-to-noise ratio for DAE’s representation learning. We construct a separate branch for important ID features to prevent information loss. Results show our solution can accurately predict returns ranking while maintaining generalization. On the task of portfolio optimization, a </span>Differential Evolution algorithm is presented to optimize asset allocation and maximize returns under risk constraints, demonstrating improved performance over traditional techniques. These methods led to a 4th place global ranking in the M6 competition.</span></span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1494-1504"},"PeriodicalIF":7.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust returns ranking prediction and portfolio optimization for M6\",\"authors\":\"Hongfeng Ai ,&nbsp;Chenning Liu ,&nbsp;Peng Lin\",\"doi\":\"10.1016/j.ijforecast.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>The M6 competition aims to address challenging problems in stock returns ranking prediction and portfolio optimization. To tackle the volatility and low signal-to-noise ratio in the stock market, our team designs the overall solution from the robustness perspective. Regarding returns ranking prediction, we present the MultiTask </span>Deep Neural Network<span><span> with Denoising </span>Autoencoder<span><span> Enhancement (MT-DNN-DAE), which incorporates the self-supervised learning of DAE and jointly optimizes the multi-task loss. We propose Robust Feature Selection (RFS) to identify features with a high signal-to-noise ratio for DAE’s representation learning. We construct a separate branch for important ID features to prevent information loss. Results show our solution can accurately predict returns ranking while maintaining generalization. On the task of portfolio optimization, a </span>Differential Evolution algorithm is presented to optimize asset allocation and maximize returns under risk constraints, demonstrating improved performance over traditional techniques. These methods led to a 4th place global ranking in the M6 competition.</span></span></div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1494-1504\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000359\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000359","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

M6竞赛旨在解决股票收益排名预测和投资组合优化方面的挑战性问题。为了解决股票市场的波动性和低信噪比问题,我们团队从鲁棒性角度设计了整体解决方案。在收益排序预测方面,我们提出了带有去噪自编码器增强的多任务深度神经网络(MT-DNN-DAE),它结合了DAE的自监督学习,共同优化了多任务损失。我们提出鲁棒特征选择(RFS)来识别具有高信噪比的特征,用于DAE的表示学习。我们为重要的ID特征构建了一个单独的分支,以防止信息丢失。结果表明,该方法在保持通用性的同时,能够准确地预测收益排序。在投资组合优化问题上,提出了一种差分进化算法,在风险约束下优化资产配置,实现收益最大化。这些方法使他在M6比赛中获得了全球第四名的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust returns ranking prediction and portfolio optimization for M6
The M6 competition aims to address challenging problems in stock returns ranking prediction and portfolio optimization. To tackle the volatility and low signal-to-noise ratio in the stock market, our team designs the overall solution from the robustness perspective. Regarding returns ranking prediction, we present the MultiTask Deep Neural Network with Denoising Autoencoder Enhancement (MT-DNN-DAE), which incorporates the self-supervised learning of DAE and jointly optimizes the multi-task loss. We propose Robust Feature Selection (RFS) to identify features with a high signal-to-noise ratio for DAE’s representation learning. We construct a separate branch for important ID features to prevent information loss. Results show our solution can accurately predict returns ranking while maintaining generalization. On the task of portfolio optimization, a Differential Evolution algorithm is presented to optimize asset allocation and maximize returns under risk constraints, demonstrating improved performance over traditional techniques. These methods led to a 4th place global ranking in the M6 competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信