{"title":"振动器与地面相互作用系统的概率性能分析方法","authors":"Xun Peng , Yangnanwang Liu , Lei Hao","doi":"10.1016/j.probengmech.2024.103626","DOIUrl":null,"url":null,"abstract":"<div><p>There is an increasing interest in investigating the effects of input uncertainties on dynamic systems. The probabilistic analyses for a vibrator-ground (VG) interaction system are rare and the effects of system uncertainties need to be revealed. This study aims to present an approach for the probabilistic performance-based analysis of the VG system under multi-source uncertainties. The probabilistic model of the VG system is constructed on the basis of the Monte Carlo (MC) simulation combined with the Latin Hypercube Sampling (LHS) method, while the artificial neural networks optimized by the genetic algorithms are employed to reduce the large computational expenses in the MC simulation. Then, a multi-criteria sensitivity analysis is presented by using a technique for order preference by similarity to ideal solution (TOPSIS) to evaluate the effects of input uncertainties on the dynamic performance of the vibrator. Finally, a probabilistic simulation analysis of the VG system is conducted by implementing the presented approach. The results demonstrate the effectiveness of the presented probabilistic performance-based analysis approach for the VG system and evaluate the effects of input uncertainties on the dynamic performance of the system.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"76 ","pages":"Article 103626"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic performance-based analysis approach for a vibrator-ground interaction system\",\"authors\":\"Xun Peng , Yangnanwang Liu , Lei Hao\",\"doi\":\"10.1016/j.probengmech.2024.103626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is an increasing interest in investigating the effects of input uncertainties on dynamic systems. The probabilistic analyses for a vibrator-ground (VG) interaction system are rare and the effects of system uncertainties need to be revealed. This study aims to present an approach for the probabilistic performance-based analysis of the VG system under multi-source uncertainties. The probabilistic model of the VG system is constructed on the basis of the Monte Carlo (MC) simulation combined with the Latin Hypercube Sampling (LHS) method, while the artificial neural networks optimized by the genetic algorithms are employed to reduce the large computational expenses in the MC simulation. Then, a multi-criteria sensitivity analysis is presented by using a technique for order preference by similarity to ideal solution (TOPSIS) to evaluate the effects of input uncertainties on the dynamic performance of the vibrator. Finally, a probabilistic simulation analysis of the VG system is conducted by implementing the presented approach. The results demonstrate the effectiveness of the presented probabilistic performance-based analysis approach for the VG system and evaluate the effects of input uncertainties on the dynamic performance of the system.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"76 \",\"pages\":\"Article 103626\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000481\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000481","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
人们对研究输入不确定性对动态系统的影响越来越感兴趣。振动器与地面(VG)相互作用系统的概率分析并不多见,需要揭示系统不确定性的影响。本研究旨在提出一种在多源不确定性条件下对振动器-地面系统进行基于性能的概率分析的方法。在蒙特卡罗(Monte Carlo,MC)仿真的基础上,结合拉丁超立方采样(Latin Hypercube Sampling,LHS)方法构建了 VG 系统的概率模型,并采用遗传算法优化的人工神经网络来减少 MC 仿真中的大量计算费用。然后,利用与理想解相似度排序偏好(TOPSIS)技术进行多标准敏感性分析,以评估输入不确定性对振动器动态性能的影响。最后,通过实施所提出的方法,对 VG 系统进行了概率仿真分析。结果证明了所提出的基于概率性能的分析方法对振动器系统的有效性,并评估了输入不确定性对系统动态性能的影响。
A probabilistic performance-based analysis approach for a vibrator-ground interaction system
There is an increasing interest in investigating the effects of input uncertainties on dynamic systems. The probabilistic analyses for a vibrator-ground (VG) interaction system are rare and the effects of system uncertainties need to be revealed. This study aims to present an approach for the probabilistic performance-based analysis of the VG system under multi-source uncertainties. The probabilistic model of the VG system is constructed on the basis of the Monte Carlo (MC) simulation combined with the Latin Hypercube Sampling (LHS) method, while the artificial neural networks optimized by the genetic algorithms are employed to reduce the large computational expenses in the MC simulation. Then, a multi-criteria sensitivity analysis is presented by using a technique for order preference by similarity to ideal solution (TOPSIS) to evaluate the effects of input uncertainties on the dynamic performance of the vibrator. Finally, a probabilistic simulation analysis of the VG system is conducted by implementing the presented approach. The results demonstrate the effectiveness of the presented probabilistic performance-based analysis approach for the VG system and evaluate the effects of input uncertainties on the dynamic performance of the system.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.