识别网络调查中的粗心应答

A. Pokropek, Tomasz Żółtak, Marek Muszyński
{"title":"识别网络调查中的粗心应答","authors":"A. Pokropek, Tomasz Żółtak, Marek Muszyński","doi":"10.1027/2151-2604/a000555","DOIUrl":null,"url":null,"abstract":"Abstract: The increasing use of web-based surveys in social sciences research has brought forth the challenge of effectively identifying and managing inattentive/careless responding. The existing detection methods have shown limited success, highlighting the need for improved methodologies. This study introduces a novel approach that utilizes time-stamped action sequence data of mouse movements and employs deep learning models to detect careless responding. It introduces the concept of Approximate Areas of Interest (AAOIs) along with the application of Gated Recurrent Units (GRUs) and Bidirectional Long Short-Term Memory (BiLSTM) models. This research presents a flexible and efficient tool that can be applied across different scales and survey contexts. The results demonstrate the superior performance of the proposed approach in identifying group membership, achieving up to 95% accuracy when tested on experimental data with induced inattentiveness. The presented approach offers a potentially promising tool for overcoming the pervasive challenge of detecting careless responding in computer-based surveys.","PeriodicalId":263823,"journal":{"name":"Zeitschrift für Psychologie","volume":"181 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Careless Responding in Web-Based Surveys\",\"authors\":\"A. Pokropek, Tomasz Żółtak, Marek Muszyński\",\"doi\":\"10.1027/2151-2604/a000555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The increasing use of web-based surveys in social sciences research has brought forth the challenge of effectively identifying and managing inattentive/careless responding. The existing detection methods have shown limited success, highlighting the need for improved methodologies. This study introduces a novel approach that utilizes time-stamped action sequence data of mouse movements and employs deep learning models to detect careless responding. It introduces the concept of Approximate Areas of Interest (AAOIs) along with the application of Gated Recurrent Units (GRUs) and Bidirectional Long Short-Term Memory (BiLSTM) models. This research presents a flexible and efficient tool that can be applied across different scales and survey contexts. The results demonstrate the superior performance of the proposed approach in identifying group membership, achieving up to 95% accuracy when tested on experimental data with induced inattentiveness. The presented approach offers a potentially promising tool for overcoming the pervasive challenge of detecting careless responding in computer-based surveys.\",\"PeriodicalId\":263823,\"journal\":{\"name\":\"Zeitschrift für Psychologie\",\"volume\":\"181 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Psychologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1027/2151-2604/a000555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Psychologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1027/2151-2604/a000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:社会科学研究中越来越多地使用基于网络的调查,这给有效识别和管理注意力不集中/粗心的应答带来了挑战。现有的检测方法成功率有限,凸显了改进方法的必要性。本研究介绍了一种利用鼠标移动的时间戳动作序列数据和深度学习模型来检测粗心应答的新方法。它引入了兴趣近似区(AAOIs)的概念,并应用了门控递归单元(GRUs)和双向长短期记忆(BiLSTM)模型。这项研究提出了一种灵活高效的工具,可应用于不同规模和调查环境。研究结果表明,所提出的方法在识别群体成员方面具有卓越的性能,在对诱导注意力不集中的实验数据进行测试时,准确率高达 95%。所提出的方法为克服在基于计算机的调查中检测粗心应答这一普遍挑战提供了一种潜在的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Careless Responding in Web-Based Surveys
Abstract: The increasing use of web-based surveys in social sciences research has brought forth the challenge of effectively identifying and managing inattentive/careless responding. The existing detection methods have shown limited success, highlighting the need for improved methodologies. This study introduces a novel approach that utilizes time-stamped action sequence data of mouse movements and employs deep learning models to detect careless responding. It introduces the concept of Approximate Areas of Interest (AAOIs) along with the application of Gated Recurrent Units (GRUs) and Bidirectional Long Short-Term Memory (BiLSTM) models. This research presents a flexible and efficient tool that can be applied across different scales and survey contexts. The results demonstrate the superior performance of the proposed approach in identifying group membership, achieving up to 95% accuracy when tested on experimental data with induced inattentiveness. The presented approach offers a potentially promising tool for overcoming the pervasive challenge of detecting careless responding in computer-based surveys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信