{"title":"重复释放 CeO2 纳米粒子改变了藻类的反应:生长、光合作用和光合基因表达","authors":"","doi":"10.1016/j.eehl.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae <em>Chlorella vulgaris</em> following single and repeated exposures to cerium oxide nanoparticles (CeO<sub>2</sub> NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in <em>C. vulgaris</em> compared to a single exposure. Photosynthesis-related genes (i.e., <em>petA</em>, <em>petB</em>, <em>psaA</em>, <em>atpB</em>, and <em>rbcL</em>) were found to be upregulated following repeated exposures. Particularly for <em>petB</em>, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92–10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO<sub>2</sub> NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 3","pages":"Pages 290-299"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772985024000309/pdfft?md5=c5ac793f4bb0735b928194aab22d3cdc&pid=1-s2.0-S2772985024000309-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression\",\"authors\":\"\",\"doi\":\"10.1016/j.eehl.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae <em>Chlorella vulgaris</em> following single and repeated exposures to cerium oxide nanoparticles (CeO<sub>2</sub> NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in <em>C. vulgaris</em> compared to a single exposure. Photosynthesis-related genes (i.e., <em>petA</em>, <em>petB</em>, <em>psaA</em>, <em>atpB</em>, and <em>rbcL</em>) were found to be upregulated following repeated exposures. Particularly for <em>petB</em>, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92–10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO<sub>2</sub> NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.</p></div>\",\"PeriodicalId\":29813,\"journal\":{\"name\":\"Eco-Environment & Health\",\"volume\":\"3 3\",\"pages\":\"Pages 290-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772985024000309/pdfft?md5=c5ac793f4bb0735b928194aab22d3cdc&pid=1-s2.0-S2772985024000309-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eco-Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772985024000309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression
The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae Chlorella vulgaris following single and repeated exposures to cerium oxide nanoparticles (CeO2 NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in C. vulgaris compared to a single exposure. Photosynthesis-related genes (i.e., petA, petB, psaA, atpB, and rbcL) were found to be upregulated following repeated exposures. Particularly for petB, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92–10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO2 NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.
期刊介绍:
Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.
Scopes
EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include:
1) Ecology and Biodiversity Conservation
Biodiversity
Ecological restoration
Ecological safety
Protected area
2) Environmental and Biological Fate of Emerging Contaminants
Environmental behaviors
Environmental processes
Environmental microbiology
3) Human Exposure and Health Effects
Environmental toxicology
Environmental epidemiology
Environmental health risk
Food safety
4) Evaluation, Management and Regulation of Environmental Risks
Chemical safety
Environmental policy
Health policy
Health economics
Environmental remediation