Zhen Cheng, Xiao Zhou, Miao Gu, Juntao Deng, Mingyu Dong, Min Liu
{"title":"用于高通量荧光激活细胞分拣的刚性微流控芯片","authors":"Zhen Cheng, Xiao Zhou, Miao Gu, Juntao Deng, Mingyu Dong, Min Liu","doi":"10.1016/j.snr.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescence-activated cell sorting (FACS) holds great promise for the separation of single cells or cell populations according to specific light scattering and fluorescent characteristics. Here, we present a new perspective on microfluidic FACS (μFACS) with predictable geometry, which meets the requirements of high-throughput analysis and sorting. Instead of the widely applied elastic polydimethylsiloxane (PDMS), a rigid epoxy resin chip was rapidly fabricated and irreversibly encapsulated to eliminate channel deformation (tenfold reduction) and enhance performance while meeting high pressure (>600 kPa) and high flow rate application scenarios. Fluorescence discrimination and particle differentiation were additionally validated in a self-contained μFACS system using calibration microspheres and mammalian cells. The μFACS chip and system were integrally optimized to achieve a minimum interval (0.58 ms) with a mean flow rate of 1.5 m/s. Ultimately, event recording and automated sorting were accomplished in real time while achieving a sorting efficiency of 87% at cell throughput of 8,000 events/s. This rigid chip for high-throughput μFACS, which is independent of the physical properties of cells could pave the way for cell screening in plasma samples for personalized medicine.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100196"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000122/pdfft?md5=5fc8dec82dd580ca0c44bf1be27e0848&pid=1-s2.0-S2666053924000122-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A rigid microfluidic chip for high-throughput fluorescence-activated cell sorting\",\"authors\":\"Zhen Cheng, Xiao Zhou, Miao Gu, Juntao Deng, Mingyu Dong, Min Liu\",\"doi\":\"10.1016/j.snr.2024.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorescence-activated cell sorting (FACS) holds great promise for the separation of single cells or cell populations according to specific light scattering and fluorescent characteristics. Here, we present a new perspective on microfluidic FACS (μFACS) with predictable geometry, which meets the requirements of high-throughput analysis and sorting. Instead of the widely applied elastic polydimethylsiloxane (PDMS), a rigid epoxy resin chip was rapidly fabricated and irreversibly encapsulated to eliminate channel deformation (tenfold reduction) and enhance performance while meeting high pressure (>600 kPa) and high flow rate application scenarios. Fluorescence discrimination and particle differentiation were additionally validated in a self-contained μFACS system using calibration microspheres and mammalian cells. The μFACS chip and system were integrally optimized to achieve a minimum interval (0.58 ms) with a mean flow rate of 1.5 m/s. Ultimately, event recording and automated sorting were accomplished in real time while achieving a sorting efficiency of 87% at cell throughput of 8,000 events/s. This rigid chip for high-throughput μFACS, which is independent of the physical properties of cells could pave the way for cell screening in plasma samples for personalized medicine.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000122/pdfft?md5=5fc8dec82dd580ca0c44bf1be27e0848&pid=1-s2.0-S2666053924000122-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A rigid microfluidic chip for high-throughput fluorescence-activated cell sorting
Fluorescence-activated cell sorting (FACS) holds great promise for the separation of single cells or cell populations according to specific light scattering and fluorescent characteristics. Here, we present a new perspective on microfluidic FACS (μFACS) with predictable geometry, which meets the requirements of high-throughput analysis and sorting. Instead of the widely applied elastic polydimethylsiloxane (PDMS), a rigid epoxy resin chip was rapidly fabricated and irreversibly encapsulated to eliminate channel deformation (tenfold reduction) and enhance performance while meeting high pressure (>600 kPa) and high flow rate application scenarios. Fluorescence discrimination and particle differentiation were additionally validated in a self-contained μFACS system using calibration microspheres and mammalian cells. The μFACS chip and system were integrally optimized to achieve a minimum interval (0.58 ms) with a mean flow rate of 1.5 m/s. Ultimately, event recording and automated sorting were accomplished in real time while achieving a sorting efficiency of 87% at cell throughput of 8,000 events/s. This rigid chip for high-throughput μFACS, which is independent of the physical properties of cells could pave the way for cell screening in plasma samples for personalized medicine.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.