Si-Min Lu , Jean-Marc Noël , Jean-François Lemineur
{"title":"碰撞电化学:研究复杂过程的简单方法","authors":"Si-Min Lu , Jean-Marc Noël , Jean-François Lemineur","doi":"10.1016/j.coelec.2024.101518","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the apparent simplicity of collision electrochemistry, recent studies have demonstrated that the transient responses often exhibit a high degree of complexity. This complexity originates either from a temporal evolution of the current transient or from the combination of distinct processes occurring simultaneously. Unraveling these current blips and their progression over time allowed revealing various processes such as growth, morphology transformation, complex electrocatalytic mechanisms, and simultaneous reactions at the single-entity level. However, this level of complexity might lead to misinterpretation if the interfacial interactions are not properly understood. In this review, we summarize the recent studies aiming at investigating <em>operando</em> the evolution of colloidal solutions and resolving concomitant processes by collision electrochemistry. Next, we discuss studies that report the role of interfacial interactions that could possibly blur the observation of such complex events. To this end, we particularly highlight the advantages of correlative approaches to collect crucial complementary information.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"45 ","pages":"Article 101518"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision electrochemistry: A simple methodology for investigating complex processes\",\"authors\":\"Si-Min Lu , Jean-Marc Noël , Jean-François Lemineur\",\"doi\":\"10.1016/j.coelec.2024.101518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the apparent simplicity of collision electrochemistry, recent studies have demonstrated that the transient responses often exhibit a high degree of complexity. This complexity originates either from a temporal evolution of the current transient or from the combination of distinct processes occurring simultaneously. Unraveling these current blips and their progression over time allowed revealing various processes such as growth, morphology transformation, complex electrocatalytic mechanisms, and simultaneous reactions at the single-entity level. However, this level of complexity might lead to misinterpretation if the interfacial interactions are not properly understood. In this review, we summarize the recent studies aiming at investigating <em>operando</em> the evolution of colloidal solutions and resolving concomitant processes by collision electrochemistry. Next, we discuss studies that report the role of interfacial interactions that could possibly blur the observation of such complex events. To this end, we particularly highlight the advantages of correlative approaches to collect crucial complementary information.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"45 \",\"pages\":\"Article 101518\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000796\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000796","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Collision electrochemistry: A simple methodology for investigating complex processes
Despite the apparent simplicity of collision electrochemistry, recent studies have demonstrated that the transient responses often exhibit a high degree of complexity. This complexity originates either from a temporal evolution of the current transient or from the combination of distinct processes occurring simultaneously. Unraveling these current blips and their progression over time allowed revealing various processes such as growth, morphology transformation, complex electrocatalytic mechanisms, and simultaneous reactions at the single-entity level. However, this level of complexity might lead to misinterpretation if the interfacial interactions are not properly understood. In this review, we summarize the recent studies aiming at investigating operando the evolution of colloidal solutions and resolving concomitant processes by collision electrochemistry. Next, we discuss studies that report the role of interfacial interactions that could possibly blur the observation of such complex events. To this end, we particularly highlight the advantages of correlative approaches to collect crucial complementary information.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •