{"title":"加速可持续生物燃料生产的先进纳米材料设计与合成 - 综述","authors":"Farooq Sher , Imane Ziani , Mariam Hameed , Salman Ali , Jasmina Sulejmanović","doi":"10.1016/j.cogsc.2024.100925","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of nanomaterials in biofuel production has garnered considerable attention owing to their distinctive characteristics, including a high surface-area-to-volume ratio, strong dispersibility, and enhanced reactivity. This review delves into the transformative role played by nanomaterials, specifically graphene-based catalysts, metal–organic frameworks, biomass waste materials, and carbon nanotubes, in augmenting various facets of biofuel production. Noteworthy examples include the application of metal-modified graphene oxide composite catalysts, incorporating aluminium and ferric, revealing a significant 25% reduction in free fatty acid content and a remarkable 15% increase in methyl hexadecanoic yield. Furthermore, the eco-friendly synthesis of TiO<sub>2</sub> nanoparticles showcased consistently high biodiesel yields, reaching 95% over 10 cycles, underscoring its economic advantages and stability. However, it is essential to acknowledge the potential drawbacks associated with nanomaterial utilization in biofuel production. Environmental concerns, such as nanoparticle release during production processes and their impact on ecosystems as well as safety issues related to exposure to nanoparticles, require careful consideration. This comprehensive overview encompasses recent studies on green synthesis, hydrothermal-assisted carbonization, gold nanoparticles in biomass hydrolysis, and the impact of nano-fuel technology on engine characteristics. Innovations in catalysts and processes, such as sulfonic acid functionalized metal–organic frameworks and magnetic MOF-derived materials, are scrutinized for their sustainability. The review culminates with a thorough analysis of the environmental and economic impacts, accentuating both the potential benefits and challenges entailed in the seamless integration of nanotechnology into biofuel production.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100925"},"PeriodicalIF":9.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced nanomaterials design and synthesis for accelerating sustainable biofuels production – A review\",\"authors\":\"Farooq Sher , Imane Ziani , Mariam Hameed , Salman Ali , Jasmina Sulejmanović\",\"doi\":\"10.1016/j.cogsc.2024.100925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of nanomaterials in biofuel production has garnered considerable attention owing to their distinctive characteristics, including a high surface-area-to-volume ratio, strong dispersibility, and enhanced reactivity. This review delves into the transformative role played by nanomaterials, specifically graphene-based catalysts, metal–organic frameworks, biomass waste materials, and carbon nanotubes, in augmenting various facets of biofuel production. Noteworthy examples include the application of metal-modified graphene oxide composite catalysts, incorporating aluminium and ferric, revealing a significant 25% reduction in free fatty acid content and a remarkable 15% increase in methyl hexadecanoic yield. Furthermore, the eco-friendly synthesis of TiO<sub>2</sub> nanoparticles showcased consistently high biodiesel yields, reaching 95% over 10 cycles, underscoring its economic advantages and stability. However, it is essential to acknowledge the potential drawbacks associated with nanomaterial utilization in biofuel production. Environmental concerns, such as nanoparticle release during production processes and their impact on ecosystems as well as safety issues related to exposure to nanoparticles, require careful consideration. This comprehensive overview encompasses recent studies on green synthesis, hydrothermal-assisted carbonization, gold nanoparticles in biomass hydrolysis, and the impact of nano-fuel technology on engine characteristics. Innovations in catalysts and processes, such as sulfonic acid functionalized metal–organic frameworks and magnetic MOF-derived materials, are scrutinized for their sustainability. The review culminates with a thorough analysis of the environmental and economic impacts, accentuating both the potential benefits and challenges entailed in the seamless integration of nanotechnology into biofuel production.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"47 \",\"pages\":\"Article 100925\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000464\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced nanomaterials design and synthesis for accelerating sustainable biofuels production – A review
The utilization of nanomaterials in biofuel production has garnered considerable attention owing to their distinctive characteristics, including a high surface-area-to-volume ratio, strong dispersibility, and enhanced reactivity. This review delves into the transformative role played by nanomaterials, specifically graphene-based catalysts, metal–organic frameworks, biomass waste materials, and carbon nanotubes, in augmenting various facets of biofuel production. Noteworthy examples include the application of metal-modified graphene oxide composite catalysts, incorporating aluminium and ferric, revealing a significant 25% reduction in free fatty acid content and a remarkable 15% increase in methyl hexadecanoic yield. Furthermore, the eco-friendly synthesis of TiO2 nanoparticles showcased consistently high biodiesel yields, reaching 95% over 10 cycles, underscoring its economic advantages and stability. However, it is essential to acknowledge the potential drawbacks associated with nanomaterial utilization in biofuel production. Environmental concerns, such as nanoparticle release during production processes and their impact on ecosystems as well as safety issues related to exposure to nanoparticles, require careful consideration. This comprehensive overview encompasses recent studies on green synthesis, hydrothermal-assisted carbonization, gold nanoparticles in biomass hydrolysis, and the impact of nano-fuel technology on engine characteristics. Innovations in catalysts and processes, such as sulfonic acid functionalized metal–organic frameworks and magnetic MOF-derived materials, are scrutinized for their sustainability. The review culminates with a thorough analysis of the environmental and economic impacts, accentuating both the potential benefits and challenges entailed in the seamless integration of nanotechnology into biofuel production.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.