过程最优路径中耦合宏观波动理论方程的孤子解、呼吸解和有理波解

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Li Li, Chengcheng Fan, Fajun Yu
{"title":"过程最优路径中耦合宏观波动理论方程的孤子解、呼吸解和有理波解","authors":"Li Li,&nbsp;Chengcheng Fan,&nbsp;Fajun Yu","doi":"10.1016/j.wavemoti.2024.103329","DOIUrl":null,"url":null,"abstract":"<div><p>The solution of the macroscopic fluctuation theory (MFT) equation can describe the optimal path of the process, and the Darboux transformation (DT) method can solve soliton solution of some integrable equations. In this paper, we obtained the exact solutions of the coupled macroscopic fluctuation theory (CMFT) equations using the DT method. By constructing a novel type of Lax pairs with <span><math><msqrt><mrow><mi>i</mi><mi>k</mi></mrow></msqrt></math></span>, we derive some expressions for the 1-soliton, 2-soliton, and <span><math><mi>n</mi></math></span>-soliton solutions of the CMFT equations, including some soliton solutions, breather solutions and rational wave solutions. Based on these solutions, we consider the elastic interactions and dynamics between two solitons in CMFT equations. These results can present some novel phenomena in the optimal path of the process.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"128 ","pages":"Article 103329"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton solution, breather solution and rational wave solution for the coupled macroscopic fluctuation theory equation in the optimal path of the process\",\"authors\":\"Li Li,&nbsp;Chengcheng Fan,&nbsp;Fajun Yu\",\"doi\":\"10.1016/j.wavemoti.2024.103329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solution of the macroscopic fluctuation theory (MFT) equation can describe the optimal path of the process, and the Darboux transformation (DT) method can solve soliton solution of some integrable equations. In this paper, we obtained the exact solutions of the coupled macroscopic fluctuation theory (CMFT) equations using the DT method. By constructing a novel type of Lax pairs with <span><math><msqrt><mrow><mi>i</mi><mi>k</mi></mrow></msqrt></math></span>, we derive some expressions for the 1-soliton, 2-soliton, and <span><math><mi>n</mi></math></span>-soliton solutions of the CMFT equations, including some soliton solutions, breather solutions and rational wave solutions. Based on these solutions, we consider the elastic interactions and dynamics between two solitons in CMFT equations. These results can present some novel phenomena in the optimal path of the process.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"128 \",\"pages\":\"Article 103329\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000593\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000593","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

宏观波动理论(MFT)方程的解可以描述过程的最优路径,而达布变换(DT)方法可以求解一些可积分方程的孤子解。在本文中,我们利用 DT 方法得到了耦合宏观波动理论(CMFT)方程的精确解。通过构建一种新型的ik Lax对,我们推导出了CMFT方程的1-孑子解、2-孑子解和n-孑子解的一些表达式,包括一些孤子解、呼吸解和有理波解。在这些解的基础上,我们考虑了 CMFT 方程中两个孤子之间的弹性相互作用和动力学。这些结果可以在过程的最优路径中呈现一些新的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton solution, breather solution and rational wave solution for the coupled macroscopic fluctuation theory equation in the optimal path of the process

The solution of the macroscopic fluctuation theory (MFT) equation can describe the optimal path of the process, and the Darboux transformation (DT) method can solve soliton solution of some integrable equations. In this paper, we obtained the exact solutions of the coupled macroscopic fluctuation theory (CMFT) equations using the DT method. By constructing a novel type of Lax pairs with ik, we derive some expressions for the 1-soliton, 2-soliton, and n-soliton solutions of the CMFT equations, including some soliton solutions, breather solutions and rational wave solutions. Based on these solutions, we consider the elastic interactions and dynamics between two solitons in CMFT equations. These results can present some novel phenomena in the optimal path of the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信