Alma van der Merwe, Madelein van Straaten, Hugo J. Woerdeman
{"title":"QRC 子代数中的 Fejér-Riesz 因式分解和四元数程的圆周性","authors":"Alma van der Merwe, Madelein van Straaten, Hugo J. Woerdeman","doi":"10.1007/s43036-024-00330-z","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a characterization when the quaternionic numerical range of a matrix is a closed ball with center 0. The proof makes use of Fejér–Riesz factorization of matrix-valued trigonometric polynomials within the algebra of complex matrices associated with quaternion matrices.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00330-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Fejér–Riesz factorization in the QRC-subalgebra and circularity of the quaternionic numerical range\",\"authors\":\"Alma van der Merwe, Madelein van Straaten, Hugo J. Woerdeman\",\"doi\":\"10.1007/s43036-024-00330-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a characterization when the quaternionic numerical range of a matrix is a closed ball with center 0. The proof makes use of Fejér–Riesz factorization of matrix-valued trigonometric polynomials within the algebra of complex matrices associated with quaternion matrices.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00330-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00330-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00330-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fejér–Riesz factorization in the QRC-subalgebra and circularity of the quaternionic numerical range
We provide a characterization when the quaternionic numerical range of a matrix is a closed ball with center 0. The proof makes use of Fejér–Riesz factorization of matrix-valued trigonometric polynomials within the algebra of complex matrices associated with quaternion matrices.