Dunkl 设置中最大多线性奇异积分的 Cotlar 型不等式和加权有界性

IF 0.8 Q2 MATHEMATICS
Suman Mukherjee
{"title":"Dunkl 设置中最大多线性奇异积分的 Cotlar 型不等式和加权有界性","authors":"Suman Mukherjee","doi":"10.1007/s43036-024-00338-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cotlar-type inequality and weighted boundedness for maximal multilinear singular integrals in Dunkl setting\",\"authors\":\"Suman Mukherjee\",\"doi\":\"10.1007/s43036-024-00338-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00338-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00338-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为 Dunkl 设置中的最大多线性奇异积分建立了多线性 Cotlar 型不等式,与同质类型空间中的多线性 Calderón-Zygmund 内核相比,其内核具有较少的正则性条件。作为应用,我们实现了最大多线性 Dunkl-Calderón-Zygmund 奇积分的加权有界性,以及与多线性 Dunkl-Calderón-Zygmund 内核相关的主值积分的点收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cotlar-type inequality and weighted boundedness for maximal multilinear singular integrals in Dunkl setting

In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信