{"title":"Dunkl 设置中最大多线性奇异积分的 Cotlar 型不等式和加权有界性","authors":"Suman Mukherjee","doi":"10.1007/s43036-024-00338-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cotlar-type inequality and weighted boundedness for maximal multilinear singular integrals in Dunkl setting\",\"authors\":\"Suman Mukherjee\",\"doi\":\"10.1007/s43036-024-00338-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00338-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00338-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cotlar-type inequality and weighted boundedness for maximal multilinear singular integrals in Dunkl setting
In this article, we establish a multilinear Cotlar-type inequality for the maximal multilinear singular integrals in Dunkl setting whose kernels possess less regularity conditions compared to the multilinear Calderón–Zygmund kernels in spaces of homogeneous type. As applications, we achieve weighted boundedness of maximal multilinear Dunkl–Calderón–Zygmund singular integrals and pointwise convergence of principal value integrals associated with multilinear Dunkl–Calderón–Zygmund kernels.