Junyuan Li , Peng Gao , Bang Tong , Zhixiang Cheng , Mingwei Cao , Wenxin Mei , Qingsong Wang , Jinhua Sun , Peng Qin
{"title":"揭示 NCM 电池热失控导致电池组顶盖失效的机理:电动汽车多相流体-结构-相互作用耦合模型","authors":"Junyuan Li , Peng Gao , Bang Tong , Zhixiang Cheng , Mingwei Cao , Wenxin Mei , Qingsong Wang , Jinhua Sun , Peng Qin","doi":"10.1016/j.etran.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><p>Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling failures. In this study, we developed a coupled multiphase fluid-structure interaction (FSI) model to simulate the evolution of up-cover baffle under the TR impact of a 52 Ah NCM battery. Our findings reveal several important insights:1) the maximum force and temperature on the baffle are 13.01 N and 598.5 °C in experiment; 2) the simulation shows that particles exert higher temperature and greater force on the baffle compared to the gas phase; 3) the overall equivalent stress in the stainless-steel baffle surpasses the tensile strength that incurs crack on the baffles. According to the validated model, we find that the baffle structure failure is caused by the thermal stress from particle-structure heat conduction. Furthermore, this observation is applicable to the structure failure problems associated to the thermal runaway of high-density battery that involves enormous particles. In addition, the insulation layer is found to be more effective than the gap distance in protecting the pack ceiling. These findings offer a valuable insight into the structure design of LIB pack, and provide the guidance toward future battery integration technologies.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: A coupled multiphase fluid-structure interaction model for electric vehicles\",\"authors\":\"Junyuan Li , Peng Gao , Bang Tong , Zhixiang Cheng , Mingwei Cao , Wenxin Mei , Qingsong Wang , Jinhua Sun , Peng Qin\",\"doi\":\"10.1016/j.etran.2024.100335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling failures. In this study, we developed a coupled multiphase fluid-structure interaction (FSI) model to simulate the evolution of up-cover baffle under the TR impact of a 52 Ah NCM battery. Our findings reveal several important insights:1) the maximum force and temperature on the baffle are 13.01 N and 598.5 °C in experiment; 2) the simulation shows that particles exert higher temperature and greater force on the baffle compared to the gas phase; 3) the overall equivalent stress in the stainless-steel baffle surpasses the tensile strength that incurs crack on the baffles. According to the validated model, we find that the baffle structure failure is caused by the thermal stress from particle-structure heat conduction. Furthermore, this observation is applicable to the structure failure problems associated to the thermal runaway of high-density battery that involves enormous particles. In addition, the insulation layer is found to be more effective than the gap distance in protecting the pack ceiling. These findings offer a valuable insight into the structure design of LIB pack, and provide the guidance toward future battery integration technologies.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000250\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: A coupled multiphase fluid-structure interaction model for electric vehicles
Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling failures. In this study, we developed a coupled multiphase fluid-structure interaction (FSI) model to simulate the evolution of up-cover baffle under the TR impact of a 52 Ah NCM battery. Our findings reveal several important insights:1) the maximum force and temperature on the baffle are 13.01 N and 598.5 °C in experiment; 2) the simulation shows that particles exert higher temperature and greater force on the baffle compared to the gas phase; 3) the overall equivalent stress in the stainless-steel baffle surpasses the tensile strength that incurs crack on the baffles. According to the validated model, we find that the baffle structure failure is caused by the thermal stress from particle-structure heat conduction. Furthermore, this observation is applicable to the structure failure problems associated to the thermal runaway of high-density battery that involves enormous particles. In addition, the insulation layer is found to be more effective than the gap distance in protecting the pack ceiling. These findings offer a valuable insight into the structure design of LIB pack, and provide the guidance toward future battery integration technologies.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.