单调斜坡之间的波形缩放

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
E. van Groesen , A. Shabrina , A.L. Latifah , Andonowati
{"title":"单调斜坡之间的波形缩放","authors":"E. van Groesen ,&nbsp;A. Shabrina ,&nbsp;A.L. Latifah ,&nbsp;Andonowati","doi":"10.1016/j.wavemoti.2024.103330","DOIUrl":null,"url":null,"abstract":"<div><p>Long crested waves above monotone bathymetries with different steepness are shown to be related by a time scaling. The scaling is explicitly present in the usual WKB approximation and more generally in the Hamiltonian potential theory for incompressible, irrotational inviscid fluid motion (Zakharov, 1968). The scaling uses the depth instead of the spatial distance as position marker, which is a canonical transformation in the action functional. This implies that waves above different slopes are related by a simple space-time scaling. At depths before near-coastal effects of run-up become relevant, the scaling property is valuable for understanding the wave propagation and may reduce laboratory experiments. Taking into account non-Hamiltonian coastal effects of breaking and coastal run-up, nonlinear simulations show correlations above 0.8 for waves above different slopes until a typical depth for many offshore activities of 15 m (Forrsitall, 2004). Numerical simulations with second- and third order nonlinearity are performed with <em>HAWASS</em>I software (Kurnia and Van Groesen, 2014), a variant of a higher order spectral method (Dommermuth and Yue, 1987; West et al., 1987). An example of the scaling is also shown to be present for an air-water CFD potential simulation (Aggarwal et al., 2020).</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"129 ","pages":"Article 103330"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of waves between monotone slopes\",\"authors\":\"E. van Groesen ,&nbsp;A. Shabrina ,&nbsp;A.L. Latifah ,&nbsp;Andonowati\",\"doi\":\"10.1016/j.wavemoti.2024.103330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long crested waves above monotone bathymetries with different steepness are shown to be related by a time scaling. The scaling is explicitly present in the usual WKB approximation and more generally in the Hamiltonian potential theory for incompressible, irrotational inviscid fluid motion (Zakharov, 1968). The scaling uses the depth instead of the spatial distance as position marker, which is a canonical transformation in the action functional. This implies that waves above different slopes are related by a simple space-time scaling. At depths before near-coastal effects of run-up become relevant, the scaling property is valuable for understanding the wave propagation and may reduce laboratory experiments. Taking into account non-Hamiltonian coastal effects of breaking and coastal run-up, nonlinear simulations show correlations above 0.8 for waves above different slopes until a typical depth for many offshore activities of 15 m (Forrsitall, 2004). Numerical simulations with second- and third order nonlinearity are performed with <em>HAWASS</em>I software (Kurnia and Van Groesen, 2014), a variant of a higher order spectral method (Dommermuth and Yue, 1987; West et al., 1987). An example of the scaling is also shown to be present for an air-water CFD potential simulation (Aggarwal et al., 2020).</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"129 \",\"pages\":\"Article 103330\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016521252400060X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252400060X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,不同陡度的单调水深上的长波峰与时间缩放有关。在通常的 WKB 近似中,以及更广泛的不可压缩、非旋转不粘性流体运动的哈密顿势理论(Zakharov,1968 年)中,都明确存在时间缩放。缩放使用深度而不是空间距离作为位置标记,这是作用函数中的典型变换。这意味着不同坡度上的波浪是通过简单的时空缩放联系在一起的。在波浪上升的近岸效应变得相关之前的深度,缩放特性对理解波浪传播很有价值,并可减少实验室实验。考虑到破浪和沿岸上升的非哈密尔顿沿岸效应,非线性模拟显示,在许多近海活动的 典型深度 15 米之前,不同坡度上的波浪相关性超过 0.8(Forrsitall,2004 年)。使用 HAWASSI 软件(Kurnia 和 Van Groesen,2014 年)进行了二阶和三阶非线性数值模拟,该软件是高阶频谱法的一种变体(Dommermuth 和 Yue,1987 年;West 等人,1987 年)。空气-水 CFD 势能模拟也显示了缩放的例子(Aggarwal 等人,2020 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling of waves between monotone slopes

Long crested waves above monotone bathymetries with different steepness are shown to be related by a time scaling. The scaling is explicitly present in the usual WKB approximation and more generally in the Hamiltonian potential theory for incompressible, irrotational inviscid fluid motion (Zakharov, 1968). The scaling uses the depth instead of the spatial distance as position marker, which is a canonical transformation in the action functional. This implies that waves above different slopes are related by a simple space-time scaling. At depths before near-coastal effects of run-up become relevant, the scaling property is valuable for understanding the wave propagation and may reduce laboratory experiments. Taking into account non-Hamiltonian coastal effects of breaking and coastal run-up, nonlinear simulations show correlations above 0.8 for waves above different slopes until a typical depth for many offshore activities of 15 m (Forrsitall, 2004). Numerical simulations with second- and third order nonlinearity are performed with HAWASSI software (Kurnia and Van Groesen, 2014), a variant of a higher order spectral method (Dommermuth and Yue, 1987; West et al., 1987). An example of the scaling is also shown to be present for an air-water CFD potential simulation (Aggarwal et al., 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信