{"title":"利用磁性 g-C3N4/MoS2 纳米复合材料开发用于检测癌症抗原 125 的无标记和有标记电化学适 应传感器","authors":"Amin Foroozandeh , Hossein SalarAmoli , Majid Abdouss , Mehrab Pourmadadi","doi":"10.1016/j.snr.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and timely detection of cancer biomarkers is pivotal for enhancing treatment outcomes and mitigating patient mortality. This study addresses the pressing need for a swift, accurate, and non-invasive method to identify cancer antigen 125 (CA125), a vital biomarker in ovarian cancer. Leveraging the growing prominence of nano-biosensors for their high selectivity and sensitivity, we present the development and characterization of an innovative electrochemical nano-biosensor. The sensor, featuring aptamer strands immobilized on a glassy carbon electrode modified with graphitic carbon nitrides, molybdenum disulfide, and magnetic nanoparticles (g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>), demonstrates superior sensitivity and accuracy in CA125 detection. Utilizing methylene blue for electrochemical detection of labeled CA125 and ferrocyanide for label-free detection, our aptasensor achieves a low limit of detection (LOD) at 0.202 U.mL<sup>−1</sup> and 0.215 U.mL<sup>−1</sup>, respectively, with a broad detection range from 2 to 10 U.mL<sup>−1</sup>. The modified electrode exhibits a pronounced affinity for CA125, demonstrating enhanced stability compared to other biomolecules. Crucially, the evaluation of both patient and normal serum samples underscores the aptasensor's remarkable performance. These findings not only establish a robust foundation for future research in ovarian cancer diagnosis but also highlight the potential clinical impact of our electrochemical nano-biosensor in advancing early cancer detection methodologies.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100195"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000110/pdfft?md5=b1da31e2a8cde13578c19ba409f06df7&pid=1-s2.0-S2666053924000110-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a labeled-free and labeled electrochemical aptasensor for the detection of cancer antigen 125 by using magnetic g-C3N4/MoS2 nanocomposite\",\"authors\":\"Amin Foroozandeh , Hossein SalarAmoli , Majid Abdouss , Mehrab Pourmadadi\",\"doi\":\"10.1016/j.snr.2024.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient and timely detection of cancer biomarkers is pivotal for enhancing treatment outcomes and mitigating patient mortality. This study addresses the pressing need for a swift, accurate, and non-invasive method to identify cancer antigen 125 (CA125), a vital biomarker in ovarian cancer. Leveraging the growing prominence of nano-biosensors for their high selectivity and sensitivity, we present the development and characterization of an innovative electrochemical nano-biosensor. The sensor, featuring aptamer strands immobilized on a glassy carbon electrode modified with graphitic carbon nitrides, molybdenum disulfide, and magnetic nanoparticles (g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>), demonstrates superior sensitivity and accuracy in CA125 detection. Utilizing methylene blue for electrochemical detection of labeled CA125 and ferrocyanide for label-free detection, our aptasensor achieves a low limit of detection (LOD) at 0.202 U.mL<sup>−1</sup> and 0.215 U.mL<sup>−1</sup>, respectively, with a broad detection range from 2 to 10 U.mL<sup>−1</sup>. The modified electrode exhibits a pronounced affinity for CA125, demonstrating enhanced stability compared to other biomolecules. Crucially, the evaluation of both patient and normal serum samples underscores the aptasensor's remarkable performance. These findings not only establish a robust foundation for future research in ovarian cancer diagnosis but also highlight the potential clinical impact of our electrochemical nano-biosensor in advancing early cancer detection methodologies.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000110/pdfft?md5=b1da31e2a8cde13578c19ba409f06df7&pid=1-s2.0-S2666053924000110-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of a labeled-free and labeled electrochemical aptasensor for the detection of cancer antigen 125 by using magnetic g-C3N4/MoS2 nanocomposite
Efficient and timely detection of cancer biomarkers is pivotal for enhancing treatment outcomes and mitigating patient mortality. This study addresses the pressing need for a swift, accurate, and non-invasive method to identify cancer antigen 125 (CA125), a vital biomarker in ovarian cancer. Leveraging the growing prominence of nano-biosensors for their high selectivity and sensitivity, we present the development and characterization of an innovative electrochemical nano-biosensor. The sensor, featuring aptamer strands immobilized on a glassy carbon electrode modified with graphitic carbon nitrides, molybdenum disulfide, and magnetic nanoparticles (g-C3N4/MoS2/Fe3O4), demonstrates superior sensitivity and accuracy in CA125 detection. Utilizing methylene blue for electrochemical detection of labeled CA125 and ferrocyanide for label-free detection, our aptasensor achieves a low limit of detection (LOD) at 0.202 U.mL−1 and 0.215 U.mL−1, respectively, with a broad detection range from 2 to 10 U.mL−1. The modified electrode exhibits a pronounced affinity for CA125, demonstrating enhanced stability compared to other biomolecules. Crucially, the evaluation of both patient and normal serum samples underscores the aptasensor's remarkable performance. These findings not only establish a robust foundation for future research in ovarian cancer diagnosis but also highlight the potential clinical impact of our electrochemical nano-biosensor in advancing early cancer detection methodologies.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.