壳聚糖稳定的铜银纳米粒子的导电性与抗菌活性之间的相关性

IF 6.2 Q1 CHEMISTRY, APPLIED
C.Raja Mohan , Ruckmani Kandasamy , J. Kabiriyel
{"title":"壳聚糖稳定的铜银纳米粒子的导电性与抗菌活性之间的相关性","authors":"C.Raja Mohan ,&nbsp;Ruckmani Kandasamy ,&nbsp;J. Kabiriyel","doi":"10.1016/j.carpta.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as <em>S. pyogenes</em> and <em>K. pneumoniae</em> as well as one fungal pathogen, <em>Candida albicans</em> . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"7 ","pages":"Article 100503"},"PeriodicalIF":6.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924000835/pdfft?md5=40452cc0798b3dcf3a5b606f5094d2d2&pid=1-s2.0-S2666893924000835-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlation between electrical conductivity and antibacterial activity of chitosan-stabilized copper and silver nanoparticles\",\"authors\":\"C.Raja Mohan ,&nbsp;Ruckmani Kandasamy ,&nbsp;J. Kabiriyel\",\"doi\":\"10.1016/j.carpta.2024.100503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as <em>S. pyogenes</em> and <em>K. pneumoniae</em> as well as one fungal pathogen, <em>Candida albicans</em> . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.</p></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"7 \",\"pages\":\"Article 100503\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666893924000835/pdfft?md5=40452cc0798b3dcf3a5b606f5094d2d2&pid=1-s2.0-S2666893924000835-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924000835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用化学还原法合成了铜和银纳米粒子。壳聚糖被用作稳定剂,是纳米粒子生长的合适介质,并能阻止粒子的氧化和聚集。研究人员使用了傅立叶变换红外光谱、紫外光谱、聚光光谱、XRD、EDAX、TEM 和 Zeta 电位等多种表征方法来检测铜和银纳米粒子。抗菌活性通过盘扩散法进行评估。这些病原体包括两种细菌病原体,如化脓性链球菌和肺炎双球菌,以及一种真菌病原体,即白色念珠菌。用 TEM 评估了合成的 CuNPs 和 AgNPs 的尺寸和形状。CuNPs 和 AgNPs 的平均粒度分布分别为 23.65 nm 和 21.76 nm。铜和 AgNPs 对两种细菌菌株和一种真菌菌株具有抗菌效果。与壳聚糖和铜纳米粒子相比,AgNPs 具有明显的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation between electrical conductivity and antibacterial activity of chitosan-stabilized copper and silver nanoparticles

In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as S. pyogenes and K. pneumoniae as well as one fungal pathogen, Candida albicans . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信