{"title":"利用外部磁场从二次测量中进行稀疏恢复","authors":"Augustin Cosse","doi":"10.1016/j.apnum.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> denotes the <em>n</em>-dimensional unit sphere, <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>, from <em>m</em> quadratic measurements of the form <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⊺</mo></mrow></msubsup><mo>〉</mo><mo>+</mo><mi>λ</mi><mo>〈</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo></math></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in <span><span>[1]</span></span> that the geometry of the energy landscape becomes trivial above a certain threshold <span><math><mi>λ</mi><mo>></mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Building on this idea, we characterize the recovery of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as a function of <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that recovery of the vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be guaranteed as soon as <span><math><mi>m</mi><mo>≳</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∨</mo><mi>k</mi></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>/</mo><mi>λ</mi><mo>≲</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>. A similar result (with a slightly deteriorating sample complexity) can be shown for weaker fields. Our proof relies on an interpolation between the linear and quadratic settings, as well as on standard convex geometry arguments.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 146-169"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse recovery from quadratic measurements with external field\",\"authors\":\"Augustin Cosse\",\"doi\":\"10.1016/j.apnum.2024.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> denotes the <em>n</em>-dimensional unit sphere, <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>, from <em>m</em> quadratic measurements of the form <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⊺</mo></mrow></msubsup><mo>〉</mo><mo>+</mo><mi>λ</mi><mo>〈</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo></math></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in <span><span>[1]</span></span> that the geometry of the energy landscape becomes trivial above a certain threshold <span><math><mi>λ</mi><mo>></mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Building on this idea, we characterize the recovery of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as a function of <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that recovery of the vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be guaranteed as soon as <span><math><mi>m</mi><mo>≳</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∨</mo><mi>k</mi></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>/</mo><mi>λ</mi><mo>≲</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>. A similar result (with a slightly deteriorating sample complexity) can be shown for weaker fields. Our proof relies on an interpolation between the linear and quadratic settings, as well as on standard convex geometry arguments.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 146-169\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424000965\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sparse recovery from quadratic measurements with external field
Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector , where denotes the n-dimensional unit sphere, , from m quadratic measurements of the form where have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in [1] that the geometry of the energy landscape becomes trivial above a certain threshold . Building on this idea, we characterize the recovery of as a function of . We show that recovery of the vector can be guaranteed as soon as , provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field . A similar result (with a slightly deteriorating sample complexity) can be shown for weaker fields. Our proof relies on an interpolation between the linear and quadratic settings, as well as on standard convex geometry arguments.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.