酪氨酸--分层蛋白质组装的结构粘合剂。

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anton Maraldo , Jelena Rnjak-Kovacina , Christopher Marquis
{"title":"酪氨酸--分层蛋白质组装的结构粘合剂。","authors":"Anton Maraldo ,&nbsp;Jelena Rnjak-Kovacina ,&nbsp;Christopher Marquis","doi":"10.1016/j.tibs.2024.03.014","DOIUrl":null,"url":null,"abstract":"<div><p>Protein self-assembly, guided by the interplay of sequence- and environment-dependent liquid–liquid phase separation (LLPS), constitutes a fundamental process in the assembly of numerous intrinsically disordered proteins. Heuristic examination of these proteins has underscored the role of tyrosine residues, evident in their conservation and pivotal involvement in initiating LLPS and subsequent liquid–solid phase transitions (LSPT). The development of tyrosine-templated constructs, designed to mimic their natural counterparts, emerges as a promising strategy for creating adaptive, self-assembling systems with diverse applications. This review explores the central role of tyrosine in orchestrating protein self-assembly, delving into key interactions and examining its potential in innovative applications, including responsive biomaterials and bioengineering.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 7","pages":"Pages 633-648"},"PeriodicalIF":11.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tyrosine – a structural glue for hierarchical protein assembly\",\"authors\":\"Anton Maraldo ,&nbsp;Jelena Rnjak-Kovacina ,&nbsp;Christopher Marquis\",\"doi\":\"10.1016/j.tibs.2024.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein self-assembly, guided by the interplay of sequence- and environment-dependent liquid–liquid phase separation (LLPS), constitutes a fundamental process in the assembly of numerous intrinsically disordered proteins. Heuristic examination of these proteins has underscored the role of tyrosine residues, evident in their conservation and pivotal involvement in initiating LLPS and subsequent liquid–solid phase transitions (LSPT). The development of tyrosine-templated constructs, designed to mimic their natural counterparts, emerges as a promising strategy for creating adaptive, self-assembling systems with diverse applications. This review explores the central role of tyrosine in orchestrating protein self-assembly, delving into key interactions and examining its potential in innovative applications, including responsive biomaterials and bioengineering.</p></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 7\",\"pages\":\"Pages 633-648\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096800042400080X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096800042400080X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在序列和环境依赖性液-液相分离(LLPS)相互作用的引导下,蛋白质的自组装是众多内在无序蛋白质组装的基本过程。对这些蛋白质的启发式研究强调了酪氨酸残基的作用,它们在启动液-液相分离和随后的液-固相变(LSPT)过程中的保守性和关键性显而易见。开发以酪氨酸为模板、旨在模仿天然对应物的构建体,是创造具有多种应用的自适应、自组装系统的一种有前途的策略。这篇综述探讨了酪氨酸在协调蛋白质自组装中的核心作用,深入探讨了关键的相互作用,并研究了其在创新应用中的潜力,包括响应性生物材料和生物工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tyrosine – a structural glue for hierarchical protein assembly

Protein self-assembly, guided by the interplay of sequence- and environment-dependent liquid–liquid phase separation (LLPS), constitutes a fundamental process in the assembly of numerous intrinsically disordered proteins. Heuristic examination of these proteins has underscored the role of tyrosine residues, evident in their conservation and pivotal involvement in initiating LLPS and subsequent liquid–solid phase transitions (LSPT). The development of tyrosine-templated constructs, designed to mimic their natural counterparts, emerges as a promising strategy for creating adaptive, self-assembling systems with diverse applications. This review explores the central role of tyrosine in orchestrating protein self-assembly, delving into key interactions and examining its potential in innovative applications, including responsive biomaterials and bioengineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信