设计和评估一种具有更好机械灵敏度和热性能的聚合物粘合炸药

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"设计和评估一种具有更好机械灵敏度和热性能的聚合物粘合炸药","authors":"","doi":"10.1016/j.dt.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of TKX-50, an energetic ionic salt with a high enthalpy of formation and low sensitivity, has opened a new path for the development of high-energetic, insensitive composite explosives. However, due to the poor interfacial binding properties of TKX-50 with conventional binders, there is a lack of effective guidance for the design of TKX-50 based composite explosives. To address the above issues, the interactions between carboxymethyl cellulose acetate butyrate (CMCAB) and other binders with explosives TKX-50/HMX were compared using the molecular dynamics method. Based on the simulations, TKX-50/HMX/CMCAB-based polymer-bonded explosives (PBXs) were prepared with CMCAB as binder, which displays a high binding energy (<em>E</em><sub>bind</sub>) with TKX-50 and high cohesive energy density (CED), and the effect of TKX-50 content on the performance of PBXs was investigated. The physical properties of PBXs, specifically the morphology, mechanical sensitivity, and thermal conductivity, were analyzed by SEM, sensitivity apparatus, and thermal conductivity meter, respectively. The specific heat capacity (<em>C</em><sub><em>p</em></sub>) and non-isothermal decomposition temperature of PBXs were tested by DSC, and then the corresponding thermal kinetic parameters were analyzed to evaluate their thermal safety. The adiabatic thermal decomposition processes of PBXs were tested using an ARC instrument. The decomposition mechanism and kinetics were also explored to further analyze their thermal stability and thermal safety under adiabatic conditions. The computer code EXPLO5 was used to predict the detonation parameters of PBXs. The results showed that CMCAB and TKX-50 displayed favorable interfacial bonding properties, and TKX-50 can be bonded with HMX to form a molding powder with a desirable morphology and safety profile. The TKX-50 in PBXs effectively improves the mechanical sensitivity and thermal safety of PBX and has a significant effect on the detonation performance of PBX. This research demonstrates a novel method suitable for screening and investigating high-energetic insensitive explosive systems compatible with TKX-50.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 13-24"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and evaluation of a kind of polymer-bonded explosives with improved mechanical sensitivity and thermal properties\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of TKX-50, an energetic ionic salt with a high enthalpy of formation and low sensitivity, has opened a new path for the development of high-energetic, insensitive composite explosives. However, due to the poor interfacial binding properties of TKX-50 with conventional binders, there is a lack of effective guidance for the design of TKX-50 based composite explosives. To address the above issues, the interactions between carboxymethyl cellulose acetate butyrate (CMCAB) and other binders with explosives TKX-50/HMX were compared using the molecular dynamics method. Based on the simulations, TKX-50/HMX/CMCAB-based polymer-bonded explosives (PBXs) were prepared with CMCAB as binder, which displays a high binding energy (<em>E</em><sub>bind</sub>) with TKX-50 and high cohesive energy density (CED), and the effect of TKX-50 content on the performance of PBXs was investigated. The physical properties of PBXs, specifically the morphology, mechanical sensitivity, and thermal conductivity, were analyzed by SEM, sensitivity apparatus, and thermal conductivity meter, respectively. The specific heat capacity (<em>C</em><sub><em>p</em></sub>) and non-isothermal decomposition temperature of PBXs were tested by DSC, and then the corresponding thermal kinetic parameters were analyzed to evaluate their thermal safety. The adiabatic thermal decomposition processes of PBXs were tested using an ARC instrument. The decomposition mechanism and kinetics were also explored to further analyze their thermal stability and thermal safety under adiabatic conditions. The computer code EXPLO5 was used to predict the detonation parameters of PBXs. The results showed that CMCAB and TKX-50 displayed favorable interfacial bonding properties, and TKX-50 can be bonded with HMX to form a molding powder with a desirable morphology and safety profile. The TKX-50 in PBXs effectively improves the mechanical sensitivity and thermal safety of PBX and has a significant effect on the detonation performance of PBX. This research demonstrates a novel method suitable for screening and investigating high-energetic insensitive explosive systems compatible with TKX-50.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"40 \",\"pages\":\"Pages 13-24\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TKX-50 是一种高能离子盐,具有高形成焓和低敏感性,它的出现为开发高能、不敏感的复合炸药开辟了一条新路。然而,由于 TKX-50 与传统粘合剂的界面结合性能较差,因此在设计基于 TKX-50 的复合炸药时缺乏有效的指导。针对上述问题,使用分子动力学方法比较了羧甲基纤维素醋酸丁酸酯(CMCAB)和其他粘合剂与炸药 TKX-50/HMX 之间的相互作用。在模拟的基础上,制备了基于 TKX-50/HMX/CMCAB 的聚合物结合炸药(PBXs),以 CMCAB 为粘合剂,其与 TKX-50 的结合能(Ebind)较高,内聚能密度(CED)也较高,研究了 TKX-50 含量对 PBXs 性能的影响。分别用扫描电镜、灵敏度仪和导热仪分析了 PBX 的物理性质,特别是形态、机械灵敏度和热导率。通过 DSC 测试了 PBX 的比热容(Cp)和非等温分解温度,然后分析了相应的热动力学参数,以评估其热安全性。使用 ARC 仪器测试了 PBX 的绝热热分解过程。还探讨了分解机理和动力学,以进一步分析它们在绝热条件下的热稳定性和热安全性。利用计算机代码 EXPLO5 预测了 PBX 的爆炸参数。结果表明,CMCAB 和 TKX-50 显示出良好的界面结合性能,TKX-50 可与 HMX 结合形成具有理想形态和安全性能的成型粉末。PBX 中的 TKX-50 能有效提高 PBX 的机械敏感性和热安全性,并对 PBX 的引爆性能有显著影响。这项研究展示了一种适用于筛选和研究与 TKX-50 兼容的高能不敏感炸药系统的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and evaluation of a kind of polymer-bonded explosives with improved mechanical sensitivity and thermal properties

Design and evaluation of a kind of polymer-bonded explosives with improved mechanical sensitivity and thermal properties

Design and evaluation of a kind of polymer-bonded explosives with improved mechanical sensitivity and thermal properties
The emergence of TKX-50, an energetic ionic salt with a high enthalpy of formation and low sensitivity, has opened a new path for the development of high-energetic, insensitive composite explosives. However, due to the poor interfacial binding properties of TKX-50 with conventional binders, there is a lack of effective guidance for the design of TKX-50 based composite explosives. To address the above issues, the interactions between carboxymethyl cellulose acetate butyrate (CMCAB) and other binders with explosives TKX-50/HMX were compared using the molecular dynamics method. Based on the simulations, TKX-50/HMX/CMCAB-based polymer-bonded explosives (PBXs) were prepared with CMCAB as binder, which displays a high binding energy (Ebind) with TKX-50 and high cohesive energy density (CED), and the effect of TKX-50 content on the performance of PBXs was investigated. The physical properties of PBXs, specifically the morphology, mechanical sensitivity, and thermal conductivity, were analyzed by SEM, sensitivity apparatus, and thermal conductivity meter, respectively. The specific heat capacity (Cp) and non-isothermal decomposition temperature of PBXs were tested by DSC, and then the corresponding thermal kinetic parameters were analyzed to evaluate their thermal safety. The adiabatic thermal decomposition processes of PBXs were tested using an ARC instrument. The decomposition mechanism and kinetics were also explored to further analyze their thermal stability and thermal safety under adiabatic conditions. The computer code EXPLO5 was used to predict the detonation parameters of PBXs. The results showed that CMCAB and TKX-50 displayed favorable interfacial bonding properties, and TKX-50 can be bonded with HMX to form a molding powder with a desirable morphology and safety profile. The TKX-50 in PBXs effectively improves the mechanical sensitivity and thermal safety of PBX and has a significant effect on the detonation performance of PBX. This research demonstrates a novel method suitable for screening and investigating high-energetic insensitive explosive systems compatible with TKX-50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信