考虑页岩气藏可变气体排泄半径的改进型动态储量计算流动物质平衡方程

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM
SPE Journal Pub Date : 2024-04-01 DOI:10.2118/219750-pa
Tingting Qiu, Yunsheng Wei, Haijun Yan, Minhua Cheng, Pengcheng Liu
{"title":"考虑页岩气藏可变气体排泄半径的改进型动态储量计算流动物质平衡方程","authors":"Tingting Qiu, Yunsheng Wei, Haijun Yan, Minhua Cheng, Pengcheng Liu","doi":"10.2118/219750-pa","DOIUrl":null,"url":null,"abstract":"\n Based on the nonlinear relationship between the cumulative gas production and the total pressure difference, a segmental material balance equation was applied, and an improved flow material balance (FMB) equation was proposed to calculate the dynamic reserves of shale gas reservoirs with a variable gas drainage radius. In the early stage, the shale gas well drainage radius gradually increased. The spread range of the formation pressure increased, but fractures gradually closed because of the enhancement of the effective stress. This resulted in stress sensitivity. In the middle to late stages, the gas drainage radius can be regarded as unchanged. The rate of increase in the pressure spreading range decreased, and the rate of decrease in the fracture closure decreased. The stress sensitivity can be ignored. To explain these phenomena, a segmental material balance equation was established. Furthermore, an improved FMB equation was obtained based on the productivity equation using the potential superposition theorem, and the drainage radius of horizontal wells was regarded as a variable for the last dynamic reserve calculation. Finally, the dynamic reserves of four shale gas wells were calculated. The comparison indicated that the proposed improved equation predictions agreed more closely with actual development experience than the conventional models based on the dynamic recovery rate calculation and the correlation coefficient obtained by data fitting. The proposed method improves the dynamic reserve calculations and contributes to well productivity evaluation.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Flow Material Balance Equation for Dynamic Reserve Calculation Considering Variable Gas Drainage Radius in Shale Gas Reservoirs\",\"authors\":\"Tingting Qiu, Yunsheng Wei, Haijun Yan, Minhua Cheng, Pengcheng Liu\",\"doi\":\"10.2118/219750-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on the nonlinear relationship between the cumulative gas production and the total pressure difference, a segmental material balance equation was applied, and an improved flow material balance (FMB) equation was proposed to calculate the dynamic reserves of shale gas reservoirs with a variable gas drainage radius. In the early stage, the shale gas well drainage radius gradually increased. The spread range of the formation pressure increased, but fractures gradually closed because of the enhancement of the effective stress. This resulted in stress sensitivity. In the middle to late stages, the gas drainage radius can be regarded as unchanged. The rate of increase in the pressure spreading range decreased, and the rate of decrease in the fracture closure decreased. The stress sensitivity can be ignored. To explain these phenomena, a segmental material balance equation was established. Furthermore, an improved FMB equation was obtained based on the productivity equation using the potential superposition theorem, and the drainage radius of horizontal wells was regarded as a variable for the last dynamic reserve calculation. Finally, the dynamic reserves of four shale gas wells were calculated. The comparison indicated that the proposed improved equation predictions agreed more closely with actual development experience than the conventional models based on the dynamic recovery rate calculation and the correlation coefficient obtained by data fitting. The proposed method improves the dynamic reserve calculations and contributes to well productivity evaluation.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/219750-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/219750-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

根据累积产气量与总压差之间的非线性关系,应用分段物料平衡方程,提出了改进的流动物料平衡(FMB)方程,用于计算排气半径可变的页岩气藏的动态储量。在早期阶段,页岩气井排气半径逐渐增大。地层压力的扩散范围增大,但由于有效应力增强,裂缝逐渐闭合。这导致了应力敏感性。在中后期,气体排水半径可视为不变。压力扩散范围的增大速度减小,裂缝闭合的减小速度减小。应力敏感性可以忽略。为了解释这些现象,建立了分段材料平衡方程。此外,在产能方程的基础上,利用势叠加定理得到了改进的 FMB 方程,并将水平井的排水半径视为最后一次动储量计算的变量。最后,计算了四口页岩气井的动态储量。对比结果表明,与基于动态采收率计算和数据拟合得到的相关系数的传统模型相比,所提出的改进方程预测结果与实际开发经验更加吻合。所提出的方法改进了动态储量计算,有助于油井产能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Flow Material Balance Equation for Dynamic Reserve Calculation Considering Variable Gas Drainage Radius in Shale Gas Reservoirs
Based on the nonlinear relationship between the cumulative gas production and the total pressure difference, a segmental material balance equation was applied, and an improved flow material balance (FMB) equation was proposed to calculate the dynamic reserves of shale gas reservoirs with a variable gas drainage radius. In the early stage, the shale gas well drainage radius gradually increased. The spread range of the formation pressure increased, but fractures gradually closed because of the enhancement of the effective stress. This resulted in stress sensitivity. In the middle to late stages, the gas drainage radius can be regarded as unchanged. The rate of increase in the pressure spreading range decreased, and the rate of decrease in the fracture closure decreased. The stress sensitivity can be ignored. To explain these phenomena, a segmental material balance equation was established. Furthermore, an improved FMB equation was obtained based on the productivity equation using the potential superposition theorem, and the drainage radius of horizontal wells was regarded as a variable for the last dynamic reserve calculation. Finally, the dynamic reserves of four shale gas wells were calculated. The comparison indicated that the proposed improved equation predictions agreed more closely with actual development experience than the conventional models based on the dynamic recovery rate calculation and the correlation coefficient obtained by data fitting. The proposed method improves the dynamic reserve calculations and contributes to well productivity evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信