{"title":"对患有慢性疼痛的加拿大退伍军人进行潜在特征分析,通过自我报告措施确定 5 个有意义的类别。","authors":"","doi":"10.1016/j.jpain.2024.03.013","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to identify meaningful response patterns in self-report survey data collected from Canadian military veterans with chronic pain and to create an algorithm intended to facilitate triage and prioritization of veterans to the most appropriate interventions. An online survey was presented to former members of the Canadian military who self-identified as having chronic pain. Variables collected were related to pain, physical and mental interference, prior traumatic experiences, and indicators from each of the 7 potential drivers of the pain experience. Maximum likelihood estimation-based latent profile analysis was used to identify clinically and statistically meaningful profiles using the 7-axis variables, and classification and regression tree (CRT) analysis was then conducted to identify the most parsimonious set of indicators that could be used to accurately classify respondents into the most relevant profile group. Data from N = 322 veterans were available for analysis. The results of maximum likelihood estimation-based latent profile analysis indicated a 5-profile structure was optimal for explaining the patterns of responses within the data. These were: Mood-Dominant (13%), Localized Physical (24%), Neurosensory-Dominant (33%), Central-Dominant with complex mood and neurosensory symptoms (16%), and Trauma- and mood-dominant (14%). From CRT analysis, an algorithm requiring only 3 self-report tools (central symptoms, mood screening, bodily coherence) achieved 83% classification accuracy across the 5 profiles. The new classification algorithm requiring 16 total items may be helpful for clinicians and veterans in pain to identify the most dominant drivers of their pain experience that may be useful for prioritizing intervention strategies, targets, and relevant health care disciplines.</p></div><div><h3>Perspective</h3><p>This article presents the results of latent profile (cluster) analysis of responses to standardized self-report questionnaires by Canadian military veterans with chronic pain. It identified 5 clusters that appear to represent different drivers of the pain experience. The results could be useful for triaging veterans to the most appropriate pain care providers.</p></div>","PeriodicalId":51095,"journal":{"name":"Journal of Pain","volume":"25 8","pages":"Article 104517"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1526590024004371/pdfft?md5=81616d7c3afd3be09fcd8ed4ef76dc43&pid=1-s2.0-S1526590024004371-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Latent Profile Analysis of Canadian Military Veterans With Chronic Pain Identifies 5 Meaningful Classes Through Self-Report Measures\",\"authors\":\"\",\"doi\":\"10.1016/j.jpain.2024.03.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to identify meaningful response patterns in self-report survey data collected from Canadian military veterans with chronic pain and to create an algorithm intended to facilitate triage and prioritization of veterans to the most appropriate interventions. An online survey was presented to former members of the Canadian military who self-identified as having chronic pain. Variables collected were related to pain, physical and mental interference, prior traumatic experiences, and indicators from each of the 7 potential drivers of the pain experience. Maximum likelihood estimation-based latent profile analysis was used to identify clinically and statistically meaningful profiles using the 7-axis variables, and classification and regression tree (CRT) analysis was then conducted to identify the most parsimonious set of indicators that could be used to accurately classify respondents into the most relevant profile group. Data from N = 322 veterans were available for analysis. The results of maximum likelihood estimation-based latent profile analysis indicated a 5-profile structure was optimal for explaining the patterns of responses within the data. These were: Mood-Dominant (13%), Localized Physical (24%), Neurosensory-Dominant (33%), Central-Dominant with complex mood and neurosensory symptoms (16%), and Trauma- and mood-dominant (14%). From CRT analysis, an algorithm requiring only 3 self-report tools (central symptoms, mood screening, bodily coherence) achieved 83% classification accuracy across the 5 profiles. The new classification algorithm requiring 16 total items may be helpful for clinicians and veterans in pain to identify the most dominant drivers of their pain experience that may be useful for prioritizing intervention strategies, targets, and relevant health care disciplines.</p></div><div><h3>Perspective</h3><p>This article presents the results of latent profile (cluster) analysis of responses to standardized self-report questionnaires by Canadian military veterans with chronic pain. It identified 5 clusters that appear to represent different drivers of the pain experience. The results could be useful for triaging veterans to the most appropriate pain care providers.</p></div>\",\"PeriodicalId\":51095,\"journal\":{\"name\":\"Journal of Pain\",\"volume\":\"25 8\",\"pages\":\"Article 104517\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1526590024004371/pdfft?md5=81616d7c3afd3be09fcd8ed4ef76dc43&pid=1-s2.0-S1526590024004371-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526590024004371\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pain","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526590024004371","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Latent Profile Analysis of Canadian Military Veterans With Chronic Pain Identifies 5 Meaningful Classes Through Self-Report Measures
The purpose of this study was to identify meaningful response patterns in self-report survey data collected from Canadian military veterans with chronic pain and to create an algorithm intended to facilitate triage and prioritization of veterans to the most appropriate interventions. An online survey was presented to former members of the Canadian military who self-identified as having chronic pain. Variables collected were related to pain, physical and mental interference, prior traumatic experiences, and indicators from each of the 7 potential drivers of the pain experience. Maximum likelihood estimation-based latent profile analysis was used to identify clinically and statistically meaningful profiles using the 7-axis variables, and classification and regression tree (CRT) analysis was then conducted to identify the most parsimonious set of indicators that could be used to accurately classify respondents into the most relevant profile group. Data from N = 322 veterans were available for analysis. The results of maximum likelihood estimation-based latent profile analysis indicated a 5-profile structure was optimal for explaining the patterns of responses within the data. These were: Mood-Dominant (13%), Localized Physical (24%), Neurosensory-Dominant (33%), Central-Dominant with complex mood and neurosensory symptoms (16%), and Trauma- and mood-dominant (14%). From CRT analysis, an algorithm requiring only 3 self-report tools (central symptoms, mood screening, bodily coherence) achieved 83% classification accuracy across the 5 profiles. The new classification algorithm requiring 16 total items may be helpful for clinicians and veterans in pain to identify the most dominant drivers of their pain experience that may be useful for prioritizing intervention strategies, targets, and relevant health care disciplines.
Perspective
This article presents the results of latent profile (cluster) analysis of responses to standardized self-report questionnaires by Canadian military veterans with chronic pain. It identified 5 clusters that appear to represent different drivers of the pain experience. The results could be useful for triaging veterans to the most appropriate pain care providers.
期刊介绍:
The Journal of Pain publishes original articles related to all aspects of pain, including clinical and basic research, patient care, education, and health policy. Articles selected for publication in the Journal are most commonly reports of original clinical research or reports of original basic research. In addition, invited critical reviews, including meta analyses of drugs for pain management, invited commentaries on reviews, and exceptional case studies are published in the Journal. The mission of the Journal is to improve the care of patients in pain by providing a forum for clinical researchers, basic scientists, clinicians, and other health professionals to publish original research.