帧维函数和相位检索

IF 0.8 Q2 MATHEMATICS
Deguang Han, Kai Liu
{"title":"帧维函数和相位检索","authors":"Deguang Han,&nbsp;Kai Liu","doi":"10.1007/s43036-024-00331-y","DOIUrl":null,"url":null,"abstract":"<div><p>The frame dimension function of a frame <span>\\({{\\mathcal {F}}}= \\{f_j\\}_{j=1}^{n}\\)</span> for an <i>n</i>-dimensional Hilbert space <i>H</i> is the function <span>\\(d_{{{\\mathcal {F}}}}(x) = \\dim {\\textrm{span}}\\{ \\langle x, f_{j}\\rangle f_{j}: j=1,\\ldots , N\\}, 0\\ne x\\in H.\\)</span> It is known that <span>\\({{\\mathcal {F}}}\\)</span> does phase retrieval for an <i>n</i>-dimensional real Hilbert space <i>H</i> if and only if <span>\\({\\textrm{range}} (d_{{{\\mathcal {F}}}}) = \\{ n\\}.\\)</span> This indicates that the range of the dimension function is one of the good candidates to measure the phase retrievability for an arbitrary frame. In this paper we investigate some structural properties for the range of the dimension function, and examine the connections among different exactness of a frame with respect to its PR-redundance, dimension function and range of the dimension function. A subset <span>\\(\\Omega \\)</span> of <span>\\(\\{1,\\ldots , n\\}\\)</span> containing <i>n</i> is attainable if <span>\\({\\textrm{range}} (d_{{{\\mathcal {F}}}}) = \\Omega \\)</span> for some frame <span>\\({{\\mathcal {F}}}.\\)</span> With the help of linearly connected frames, we show that, while not every <span>\\(\\Omega \\)</span> is attainable, every (integer) interval containing <i>n</i> is always attainable by an <i>n</i>-linearly independent frame. Consequently, <span>\\({\\textrm{range}}(d_{{{\\mathcal {F}}}})\\)</span> is an interval for every generic frame for <span>\\({\\mathbb {R}}\\,^n.\\)</span> Additionally, we also discuss and post some questions related to the connections among ranges of the dimension functions, linearly connected frames and maximal phase retrievable subspaces.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame dimension functions and phase retrievability\",\"authors\":\"Deguang Han,&nbsp;Kai Liu\",\"doi\":\"10.1007/s43036-024-00331-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The frame dimension function of a frame <span>\\\\({{\\\\mathcal {F}}}= \\\\{f_j\\\\}_{j=1}^{n}\\\\)</span> for an <i>n</i>-dimensional Hilbert space <i>H</i> is the function <span>\\\\(d_{{{\\\\mathcal {F}}}}(x) = \\\\dim {\\\\textrm{span}}\\\\{ \\\\langle x, f_{j}\\\\rangle f_{j}: j=1,\\\\ldots , N\\\\}, 0\\\\ne x\\\\in H.\\\\)</span> It is known that <span>\\\\({{\\\\mathcal {F}}}\\\\)</span> does phase retrieval for an <i>n</i>-dimensional real Hilbert space <i>H</i> if and only if <span>\\\\({\\\\textrm{range}} (d_{{{\\\\mathcal {F}}}}) = \\\\{ n\\\\}.\\\\)</span> This indicates that the range of the dimension function is one of the good candidates to measure the phase retrievability for an arbitrary frame. In this paper we investigate some structural properties for the range of the dimension function, and examine the connections among different exactness of a frame with respect to its PR-redundance, dimension function and range of the dimension function. A subset <span>\\\\(\\\\Omega \\\\)</span> of <span>\\\\(\\\\{1,\\\\ldots , n\\\\}\\\\)</span> containing <i>n</i> is attainable if <span>\\\\({\\\\textrm{range}} (d_{{{\\\\mathcal {F}}}}) = \\\\Omega \\\\)</span> for some frame <span>\\\\({{\\\\mathcal {F}}}.\\\\)</span> With the help of linearly connected frames, we show that, while not every <span>\\\\(\\\\Omega \\\\)</span> is attainable, every (integer) interval containing <i>n</i> is always attainable by an <i>n</i>-linearly independent frame. Consequently, <span>\\\\({\\\\textrm{range}}(d_{{{\\\\mathcal {F}}}})\\\\)</span> is an interval for every generic frame for <span>\\\\({\\\\mathbb {R}}\\\\,^n.\\\\)</span> Additionally, we also discuss and post some questions related to the connections among ranges of the dimension functions, linearly connected frames and maximal phase retrievable subspaces.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00331-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00331-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

n维希尔伯特空间H的框架维度函数({{mathcal {F}}= \{f_j\}_{j=1}^{n}\ )是函数(d_{{mathcal {F}}}}(x) = \dim {\textrm{span}}\{ \angle x, f_{j}\rangle f_{j}: j=1,\ldots , N\}, 0\ne x\in H.\)众所周知,当且仅当\({\textrm{range}}) 时,\({{{mathcal {F}}\) 可以对 n 维实希尔伯特空间 H 进行相位检索。(d_{{\{mathcal {F}}}}) = \{ n\}.\)这表明维度函数的范围是测量任意帧的相位可检索性的最佳候选之一。本文研究了维度函数范围的一些结构特性,并考察了帧的 PR-冗余度、维度函数和维度函数范围的不同精确度之间的联系。(d_{{{mathcal {F}}}}) = \Omega \) 对于某个框架 \({{mathcal {F}}.\) 在线性相关框架的帮助下,我们证明了,虽然不是每一个 \(\Omega \) 都是可实现的,但是每一个包含 n 的(整数)区间总是可以通过一个 n 线性独立的框架实现的。因此,\({\textrm{range}}(d_{{\mathcal {F}}}})\)对于\({\mathbb {R}}\,^n.\) 的每个通用框架来说都是一个区间。此外,我们还讨论并提出了一些与维度函数的范围、线性连接框架和最大相位可检索子空间之间的联系有关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame dimension functions and phase retrievability

The frame dimension function of a frame \({{\mathcal {F}}}= \{f_j\}_{j=1}^{n}\) for an n-dimensional Hilbert space H is the function \(d_{{{\mathcal {F}}}}(x) = \dim {\textrm{span}}\{ \langle x, f_{j}\rangle f_{j}: j=1,\ldots , N\}, 0\ne x\in H.\) It is known that \({{\mathcal {F}}}\) does phase retrieval for an n-dimensional real Hilbert space H if and only if \({\textrm{range}} (d_{{{\mathcal {F}}}}) = \{ n\}.\) This indicates that the range of the dimension function is one of the good candidates to measure the phase retrievability for an arbitrary frame. In this paper we investigate some structural properties for the range of the dimension function, and examine the connections among different exactness of a frame with respect to its PR-redundance, dimension function and range of the dimension function. A subset \(\Omega \) of \(\{1,\ldots , n\}\) containing n is attainable if \({\textrm{range}} (d_{{{\mathcal {F}}}}) = \Omega \) for some frame \({{\mathcal {F}}}.\) With the help of linearly connected frames, we show that, while not every \(\Omega \) is attainable, every (integer) interval containing n is always attainable by an n-linearly independent frame. Consequently, \({\textrm{range}}(d_{{{\mathcal {F}}}})\) is an interval for every generic frame for \({\mathbb {R}}\,^n.\) Additionally, we also discuss and post some questions related to the connections among ranges of the dimension functions, linearly connected frames and maximal phase retrievable subspaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信