{"title":"抑制 Usp14 可降低 Tfap2a 的稳定性并促进有丝分裂,从而改善肾缺血再灌注损伤。","authors":"Yang Li, Boqing Dong, Ying Wang, Huanjing Bi, Jing Zhang, Chenguang Ding, Chenge Wang, Xiaoming Ding, Wujun Xue","doi":"10.1016/j.trsl.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.</p></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":"270 ","pages":"Pages 94-103"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Usp14 ameliorates renal ischemia-reperfusion injury by reducing Tfap2a stabilization and facilitating mitophagy\",\"authors\":\"Yang Li, Boqing Dong, Ying Wang, Huanjing Bi, Jing Zhang, Chenguang Ding, Chenge Wang, Xiaoming Ding, Wujun Xue\",\"doi\":\"10.1016/j.trsl.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.</p></div>\",\"PeriodicalId\":23226,\"journal\":{\"name\":\"Translational Research\",\"volume\":\"270 \",\"pages\":\"Pages 94-103\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1931524424000793\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1931524424000793","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Inhibition of Usp14 ameliorates renal ischemia-reperfusion injury by reducing Tfap2a stabilization and facilitating mitophagy
Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.
期刊介绍:
Translational Research (formerly The Journal of Laboratory and Clinical Medicine) delivers original investigations in the broad fields of laboratory, clinical, and public health research. Published monthly since 1915, it keeps readers up-to-date on significant biomedical research from all subspecialties of medicine.