{"title":"缺氧研究,何去何从?","authors":"Brian M. Ortmann , Cormac T. Taylor , Sonia Rocha","doi":"10.1016/j.tibs.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating how cells and organisms sense and respond to O<sub>2</sub> levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O<sub>2</sub> sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O<sub>2</sub> concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 7","pages":"Pages 573-582"},"PeriodicalIF":11.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424000744/pdfft?md5=8af808306ecf659f964ebdb735e9e71f&pid=1-s2.0-S0968000424000744-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypoxia research, where to now?\",\"authors\":\"Brian M. Ortmann , Cormac T. Taylor , Sonia Rocha\",\"doi\":\"10.1016/j.tibs.2024.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating how cells and organisms sense and respond to O<sub>2</sub> levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O<sub>2</sub> sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O<sub>2</sub> concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.</p></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 7\",\"pages\":\"Pages 573-582\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0968000424000744/pdfft?md5=8af808306ecf659f964ebdb735e9e71f&pid=1-s2.0-S0968000424000744-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424000744\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424000744","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Investigating how cells and organisms sense and respond to O2 levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O2 sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O2 concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.