Joe S. Hingley , César C. Martins , Chloe Walker-Trivett , Jennifer K. Adams , Sebastian Naeher , Christoph Häggi , Sarah J. Feakins , B.D.A. Naafs
{"title":"异戊二烯甘油二烷基二乙醚(isoGDDs)的全球分布与主要降解来源一致","authors":"Joe S. Hingley , César C. Martins , Chloe Walker-Trivett , Jennifer K. Adams , Sebastian Naeher , Christoph Häggi , Sarah J. Feakins , B.D.A. Naafs","doi":"10.1016/j.orggeochem.2024.104782","DOIUrl":null,"url":null,"abstract":"<div><p>Glycerol dialkyl diethers (GDDs) are membrane lipids and a variation of the more commonly known glycerol dialkyl glycerol tetraethers (GDGTs). GDGTs include both archaeal and bacterial membrane lipids that are both frequently used for paleoclimate reconstruction in a range of terrestrial and aquatic environments. In contrast to GDGTs, GDDs lack one of the terminal glycerol moieties. Although both isoprenoidal (iso) and branched (br) GDDs have been found, this study focuses on isoGDDs. These lipids have been found in a few terrestrial and aquatic environments. However, the origin of isoGDDs is debated and the extent of their distribution across the surface of the Earth is poorly constrained. Based on a few single site studies, previous authors hypothesised that isoGDDs are degradation products of isoGDGTs, but more recent studies that isolated isoGDDs from cultured nitrososphaerota (formerly thaumarchaeota) proposed a biological source through direct archaeal biosynthesis. Here we compiled a global dataset of isoGDD and isoGDGT abundance in environmental samples to thoroughly investigate the distribution of isoGDDs and the correlation with isoGDGTs on a global scale and across a variety of environments (peat, mineral soils, lake sediments, and marine sediments). We find that isoGDDs are present in most samples that we analysed. Their abundance is strongly proportional to isoGDGT abundance (r<sup>2</sup> = 0.85), dominated by the GDGT-crenarchaeol/GDD-crenarchaeol ratio (r<sup>2</sup> = 0.94) and supported by individual compound isoGDGT/isoGDD ratios (r<sup>2</sup> = 0.56–0.94). In addition, the degree of cyclisation of isoGDDs, reflected in the ring index, is positively correlated (r<sup>2</sup> = 0.84) with that of isoGDGTs across all environments. We conclude that isoGDDs are abundant on the surface of the Earth and predominantly originate from the degradation of isoGDGTs.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"192 ","pages":"Article 104782"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146638024000470/pdfft?md5=ee6d21013c4b667df0c90f4d81708e0b&pid=1-s2.0-S0146638024000470-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The global distribution of Isoprenoidal Glycerol Dialkyl Diethers (isoGDDs) is consistent with a predominant degradation origin\",\"authors\":\"Joe S. Hingley , César C. Martins , Chloe Walker-Trivett , Jennifer K. Adams , Sebastian Naeher , Christoph Häggi , Sarah J. Feakins , B.D.A. Naafs\",\"doi\":\"10.1016/j.orggeochem.2024.104782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glycerol dialkyl diethers (GDDs) are membrane lipids and a variation of the more commonly known glycerol dialkyl glycerol tetraethers (GDGTs). GDGTs include both archaeal and bacterial membrane lipids that are both frequently used for paleoclimate reconstruction in a range of terrestrial and aquatic environments. In contrast to GDGTs, GDDs lack one of the terminal glycerol moieties. Although both isoprenoidal (iso) and branched (br) GDDs have been found, this study focuses on isoGDDs. These lipids have been found in a few terrestrial and aquatic environments. However, the origin of isoGDDs is debated and the extent of their distribution across the surface of the Earth is poorly constrained. Based on a few single site studies, previous authors hypothesised that isoGDDs are degradation products of isoGDGTs, but more recent studies that isolated isoGDDs from cultured nitrososphaerota (formerly thaumarchaeota) proposed a biological source through direct archaeal biosynthesis. Here we compiled a global dataset of isoGDD and isoGDGT abundance in environmental samples to thoroughly investigate the distribution of isoGDDs and the correlation with isoGDGTs on a global scale and across a variety of environments (peat, mineral soils, lake sediments, and marine sediments). We find that isoGDDs are present in most samples that we analysed. Their abundance is strongly proportional to isoGDGT abundance (r<sup>2</sup> = 0.85), dominated by the GDGT-crenarchaeol/GDD-crenarchaeol ratio (r<sup>2</sup> = 0.94) and supported by individual compound isoGDGT/isoGDD ratios (r<sup>2</sup> = 0.56–0.94). In addition, the degree of cyclisation of isoGDDs, reflected in the ring index, is positively correlated (r<sup>2</sup> = 0.84) with that of isoGDGTs across all environments. We conclude that isoGDDs are abundant on the surface of the Earth and predominantly originate from the degradation of isoGDGTs.</p></div>\",\"PeriodicalId\":400,\"journal\":{\"name\":\"Organic Geochemistry\",\"volume\":\"192 \",\"pages\":\"Article 104782\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0146638024000470/pdfft?md5=ee6d21013c4b667df0c90f4d81708e0b&pid=1-s2.0-S0146638024000470-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146638024000470\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000470","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The global distribution of Isoprenoidal Glycerol Dialkyl Diethers (isoGDDs) is consistent with a predominant degradation origin
Glycerol dialkyl diethers (GDDs) are membrane lipids and a variation of the more commonly known glycerol dialkyl glycerol tetraethers (GDGTs). GDGTs include both archaeal and bacterial membrane lipids that are both frequently used for paleoclimate reconstruction in a range of terrestrial and aquatic environments. In contrast to GDGTs, GDDs lack one of the terminal glycerol moieties. Although both isoprenoidal (iso) and branched (br) GDDs have been found, this study focuses on isoGDDs. These lipids have been found in a few terrestrial and aquatic environments. However, the origin of isoGDDs is debated and the extent of their distribution across the surface of the Earth is poorly constrained. Based on a few single site studies, previous authors hypothesised that isoGDDs are degradation products of isoGDGTs, but more recent studies that isolated isoGDDs from cultured nitrososphaerota (formerly thaumarchaeota) proposed a biological source through direct archaeal biosynthesis. Here we compiled a global dataset of isoGDD and isoGDGT abundance in environmental samples to thoroughly investigate the distribution of isoGDDs and the correlation with isoGDGTs on a global scale and across a variety of environments (peat, mineral soils, lake sediments, and marine sediments). We find that isoGDDs are present in most samples that we analysed. Their abundance is strongly proportional to isoGDGT abundance (r2 = 0.85), dominated by the GDGT-crenarchaeol/GDD-crenarchaeol ratio (r2 = 0.94) and supported by individual compound isoGDGT/isoGDD ratios (r2 = 0.56–0.94). In addition, the degree of cyclisation of isoGDDs, reflected in the ring index, is positively correlated (r2 = 0.84) with that of isoGDGTs across all environments. We conclude that isoGDDs are abundant on the surface of the Earth and predominantly originate from the degradation of isoGDGTs.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.