Shukuan Zhang, Fachen Wang, Jingwei Zhu, Ping Zheng, Guangwei Liu
{"title":"可变磁路可变流量记忆机的多目标分层优化设计与实验验证","authors":"Shukuan Zhang, Fachen Wang, Jingwei Zhu, Ping Zheng, Guangwei Liu","doi":"10.1049/elp2.12431","DOIUrl":null,"url":null,"abstract":"<p>Rare-earth permanent magnet synchronous machines face challenges in manipulating their magnetic fields, which hinders the ability to extend the operation speed range. Moreover, this inflexibility leads to reduced efficiency in high-speed scenarios when the machine is under flux-weakening control and increases the risk of the magnets becoming demagnetised. The authors propose an alterable-magnetic-circuit variable-flux memory machine (AMC-VFMM) and a multi-objective hierarchical optimisation method is conducted to optimise the machine. Firstly, the topology and alterable-magnetic-circuit principle of the proposed AMC-VFMM are introduced. Then, optimisation objectives including torque production capability, flux regulation capability, and resisting unintentional demagnetisation capability are defined, and the hierarchical optimisation approach is established by stratifying the optimisation objectives and variables through the sensitivity analysis. Finite element analysis indicates that electromagnetic performances of the optimised design scheme are significantly enhanced. The bench test of the prototype demonstrates the superiority of the proposed AMC-VFMM and validates the effectiveness of the optimisation design method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12431","citationCount":"0","resultStr":"{\"title\":\"Multi-objective hierarchical optimisation design and experimental verification of an alterable-magnetic-circuit variable-flux memory machine\",\"authors\":\"Shukuan Zhang, Fachen Wang, Jingwei Zhu, Ping Zheng, Guangwei Liu\",\"doi\":\"10.1049/elp2.12431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rare-earth permanent magnet synchronous machines face challenges in manipulating their magnetic fields, which hinders the ability to extend the operation speed range. Moreover, this inflexibility leads to reduced efficiency in high-speed scenarios when the machine is under flux-weakening control and increases the risk of the magnets becoming demagnetised. The authors propose an alterable-magnetic-circuit variable-flux memory machine (AMC-VFMM) and a multi-objective hierarchical optimisation method is conducted to optimise the machine. Firstly, the topology and alterable-magnetic-circuit principle of the proposed AMC-VFMM are introduced. Then, optimisation objectives including torque production capability, flux regulation capability, and resisting unintentional demagnetisation capability are defined, and the hierarchical optimisation approach is established by stratifying the optimisation objectives and variables through the sensitivity analysis. Finite element analysis indicates that electromagnetic performances of the optimised design scheme are significantly enhanced. The bench test of the prototype demonstrates the superiority of the proposed AMC-VFMM and validates the effectiveness of the optimisation design method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12431\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12431\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-objective hierarchical optimisation design and experimental verification of an alterable-magnetic-circuit variable-flux memory machine
Rare-earth permanent magnet synchronous machines face challenges in manipulating their magnetic fields, which hinders the ability to extend the operation speed range. Moreover, this inflexibility leads to reduced efficiency in high-speed scenarios when the machine is under flux-weakening control and increases the risk of the magnets becoming demagnetised. The authors propose an alterable-magnetic-circuit variable-flux memory machine (AMC-VFMM) and a multi-objective hierarchical optimisation method is conducted to optimise the machine. Firstly, the topology and alterable-magnetic-circuit principle of the proposed AMC-VFMM are introduced. Then, optimisation objectives including torque production capability, flux regulation capability, and resisting unintentional demagnetisation capability are defined, and the hierarchical optimisation approach is established by stratifying the optimisation objectives and variables through the sensitivity analysis. Finite element analysis indicates that electromagnetic performances of the optimised design scheme are significantly enhanced. The bench test of the prototype demonstrates the superiority of the proposed AMC-VFMM and validates the effectiveness of the optimisation design method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.