{"title":"含尘混合铁流体通过倾斜微通道的电渗透 MHD 两相流的广义傅里叶和菲克定律研究","authors":"Dolat Khan, G. Ali, P. Kumam","doi":"10.1166/jon.2024.2118","DOIUrl":null,"url":null,"abstract":"Numerous industries, including biology and medicine, stand to benefit greatly from the cutting-edge use of electro-osmotic MHD flow of hybrid Ferro fluid via a microchannel. To investigate the electroosmotic MHD flow of a hybrid Ferro fluid with dust particles, we use a microchannel\n inclined vertically. We also take into account the magnetic field’s transverse component. The impacts of heat and mass transfer within this fluid system are the focus of this investigation. Partial differential equations are a powerful tool for modeling the aforementioned physical phenomena.\n The classical system is further fractionalized into a nondimensional form by using suitable nondimensional variables, free of dimensions, the generalized Fourier transform, and Fick’s rule. The Caputo derivative is used as a starting point for generalizations. The analytical solutions\n for the velocity (containing the hybrid Ferro fluid and dusty fluid), temperature, and concentration profiles are obtained using a mixture of Laplace and Fourier methods. The research looks at how things like temperature, stress (Grashof, Schmidt, and Prandtl numbers), and the dusty fluid\n parameter affect one another. The concentration distributions are analyzed, and graphs are presented to help visualize the results. The average values for the Sherwood number, the heat transfer rate, and the coefficient of skin friction are provided. Notably, the fractional models provide\n more leeway in finding workable solutions since they are more precise. All things considered, it seems that these strategies are quite beneficial. The hybrid Ferro fluid has the capacity to effectively modify the velocity boundary layer and has a greater heat transfer rate than both nanofluid\n and conventional fluid.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Generalized Fourier and Fick’s Law of Electro-Osmotic MHD Two-Phase Flow of Dusty Hybrid Ferrofluid Through Inclined Microchannel\",\"authors\":\"Dolat Khan, G. Ali, P. Kumam\",\"doi\":\"10.1166/jon.2024.2118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous industries, including biology and medicine, stand to benefit greatly from the cutting-edge use of electro-osmotic MHD flow of hybrid Ferro fluid via a microchannel. To investigate the electroosmotic MHD flow of a hybrid Ferro fluid with dust particles, we use a microchannel\\n inclined vertically. We also take into account the magnetic field’s transverse component. The impacts of heat and mass transfer within this fluid system are the focus of this investigation. Partial differential equations are a powerful tool for modeling the aforementioned physical phenomena.\\n The classical system is further fractionalized into a nondimensional form by using suitable nondimensional variables, free of dimensions, the generalized Fourier transform, and Fick’s rule. The Caputo derivative is used as a starting point for generalizations. The analytical solutions\\n for the velocity (containing the hybrid Ferro fluid and dusty fluid), temperature, and concentration profiles are obtained using a mixture of Laplace and Fourier methods. The research looks at how things like temperature, stress (Grashof, Schmidt, and Prandtl numbers), and the dusty fluid\\n parameter affect one another. The concentration distributions are analyzed, and graphs are presented to help visualize the results. The average values for the Sherwood number, the heat transfer rate, and the coefficient of skin friction are provided. Notably, the fractional models provide\\n more leeway in finding workable solutions since they are more precise. All things considered, it seems that these strategies are quite beneficial. The hybrid Ferro fluid has the capacity to effectively modify the velocity boundary layer and has a greater heat transfer rate than both nanofluid\\n and conventional fluid.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2024.2118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Investigation of Generalized Fourier and Fick’s Law of Electro-Osmotic MHD Two-Phase Flow of Dusty Hybrid Ferrofluid Through Inclined Microchannel
Numerous industries, including biology and medicine, stand to benefit greatly from the cutting-edge use of electro-osmotic MHD flow of hybrid Ferro fluid via a microchannel. To investigate the electroosmotic MHD flow of a hybrid Ferro fluid with dust particles, we use a microchannel
inclined vertically. We also take into account the magnetic field’s transverse component. The impacts of heat and mass transfer within this fluid system are the focus of this investigation. Partial differential equations are a powerful tool for modeling the aforementioned physical phenomena.
The classical system is further fractionalized into a nondimensional form by using suitable nondimensional variables, free of dimensions, the generalized Fourier transform, and Fick’s rule. The Caputo derivative is used as a starting point for generalizations. The analytical solutions
for the velocity (containing the hybrid Ferro fluid and dusty fluid), temperature, and concentration profiles are obtained using a mixture of Laplace and Fourier methods. The research looks at how things like temperature, stress (Grashof, Schmidt, and Prandtl numbers), and the dusty fluid
parameter affect one another. The concentration distributions are analyzed, and graphs are presented to help visualize the results. The average values for the Sherwood number, the heat transfer rate, and the coefficient of skin friction are provided. Notably, the fractional models provide
more leeway in finding workable solutions since they are more precise. All things considered, it seems that these strategies are quite beneficial. The hybrid Ferro fluid has the capacity to effectively modify the velocity boundary layer and has a greater heat transfer rate than both nanofluid
and conventional fluid.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.