Óscar Bermejo, Juan Manuel Gallardo, A. Sotillo, Arnau Altuna, Roberto Alonso, Andoni Puente
{"title":"对真实迷宫密封中的扑动进行数值和实验研究","authors":"Óscar Bermejo, Juan Manuel Gallardo, A. Sotillo, Arnau Altuna, Roberto Alonso, Andoni Puente","doi":"10.3390/ijtpp9020013","DOIUrl":null,"url":null,"abstract":"Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between aerodynamics and structural dynamics; mainly due to the very high uncertainties regarding the details of the fluid flow through the component, it is very hard to predict accurately. In 2014, as part of the E-Break research project funded by the European Union (EU), an experimental campaign regarding the flutter behaviour of labyrinth seals was conducted at “Centro de Tecnologias Aeronauticas” (CTA). During this campaign, three realistic seals were tested at different rotational speeds, and the pressure ratio where the flutter onset appeared was determined. The test was reproduced using a linearised uncoupled structural-fluid methodology of analysis based on Computational Fluid Dynamics (CFD) simulations, with results only in moderate agreement with experimental data. A procedure to adjust the CFD simulations to the steady flow measurements was developed. Once this method was applied, the matching between flutter predictions and the measured data improved, but some discrepancies could still be found. Finally, a set of simulations to retain the influence of the external cavities was run, which further improved the agreement with the testing data.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal\",\"authors\":\"Óscar Bermejo, Juan Manuel Gallardo, A. Sotillo, Arnau Altuna, Roberto Alonso, Andoni Puente\",\"doi\":\"10.3390/ijtpp9020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between aerodynamics and structural dynamics; mainly due to the very high uncertainties regarding the details of the fluid flow through the component, it is very hard to predict accurately. In 2014, as part of the E-Break research project funded by the European Union (EU), an experimental campaign regarding the flutter behaviour of labyrinth seals was conducted at “Centro de Tecnologias Aeronauticas” (CTA). During this campaign, three realistic seals were tested at different rotational speeds, and the pressure ratio where the flutter onset appeared was determined. The test was reproduced using a linearised uncoupled structural-fluid methodology of analysis based on Computational Fluid Dynamics (CFD) simulations, with results only in moderate agreement with experimental data. A procedure to adjust the CFD simulations to the steady flow measurements was developed. Once this method was applied, the matching between flutter predictions and the measured data improved, but some discrepancies could still be found. Finally, a set of simulations to retain the influence of the external cavities was run, which further improved the agreement with the testing data.\",\"PeriodicalId\":36626,\"journal\":{\"name\":\"International Journal of Turbomachinery, Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbomachinery, Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtpp9020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp9020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
迷宫密封常用于涡轮机械中,以控制泄漏流。飘动是其最危险的潜在问题之一,会导致高循环疲劳(HCF)寿命考虑甚至机械故障。这种现象取决于空气动力学和结构动力学之间的相互作用;主要由于流体流经组件的细节存在很大的不确定性,因此很难准确预测。2014 年,作为欧盟(EU)资助的 E-Break 研究项目的一部分,在 "Centro de Tecnologias Aeronauticas"(CTA)开展了一项关于迷宫密封件扑动行为的实验活动。在这次活动中,以不同的转速对三个真实的密封件进行了测试,并确定了出现扑动的压力比。在计算流体动力学(CFD)模拟的基础上,使用线性化非耦合结构-流体分析方法重现了测试,结果与实验数据基本一致。我们开发了一套程序,用于根据稳定流测量结果调整 CFD 模拟。采用这种方法后,扑翼预测结果与测量数据之间的吻合度有所提高,但仍存在一些差异。最后,运行了一组保留外部空腔影响的模拟,进一步提高了与测试数据的一致性。
Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between aerodynamics and structural dynamics; mainly due to the very high uncertainties regarding the details of the fluid flow through the component, it is very hard to predict accurately. In 2014, as part of the E-Break research project funded by the European Union (EU), an experimental campaign regarding the flutter behaviour of labyrinth seals was conducted at “Centro de Tecnologias Aeronauticas” (CTA). During this campaign, three realistic seals were tested at different rotational speeds, and the pressure ratio where the flutter onset appeared was determined. The test was reproduced using a linearised uncoupled structural-fluid methodology of analysis based on Computational Fluid Dynamics (CFD) simulations, with results only in moderate agreement with experimental data. A procedure to adjust the CFD simulations to the steady flow measurements was developed. Once this method was applied, the matching between flutter predictions and the measured data improved, but some discrepancies could still be found. Finally, a set of simulations to retain the influence of the external cavities was run, which further improved the agreement with the testing data.