三相 HTS 1 MVA 变压器与三肢铁芯耦合的交流损耗研究

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Wu , Shuangrong You , Jin Fang , Rodney A. Badcock , Nicholas J. Long , Zhenan Jiang
{"title":"三相 HTS 1 MVA 变压器与三肢铁芯耦合的交流损耗研究","authors":"Yue Wu ,&nbsp;Shuangrong You ,&nbsp;Jin Fang ,&nbsp;Rodney A. Badcock ,&nbsp;Nicholas J. Long ,&nbsp;Zhenan Jiang","doi":"10.1016/j.supcon.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature superconducting (HTS) technology provides an alternative approach to achieve compact transformers. Addressing AC loss in the HTS winding is crucial for HTS transformer applications. Most numerical AC loss studies on HTS transformers have neglected the influence of iron cores. This work carries out an AC loss study to explore the impact of an iron core on the HTS windings in a 3-phase HTS 1 MVA transformer coupled with it. AC loss simulations for the transformer winding both with and without the iron core are conducted by adopting the three-dimensional (3D) <em>T</em>-<em>A</em> homogenization method. When the iron core is incorporated, the saturation magnetic fields of iron materials, flux diverters (FDs) with different geometries, and variations in turn spacings in the LV winding composed of Roebel cables are considered to investigate their influence on the AC loss of the transformer winding. The inclusion of the iron core leads to a 1.2% increase in AC loss for the transformer winding while simulating at the rated current. We attribute this slight difference to the non-inductive winding structure of the transformer winding, where a strong magnetic field generated in the space between the LV and HV windings effectively shields the influence of the iron core.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"10 ","pages":"Article 100095"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772830724000127/pdfft?md5=40e0c580771e6c6ccb0192cb0e47602f&pid=1-s2.0-S2772830724000127-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core\",\"authors\":\"Yue Wu ,&nbsp;Shuangrong You ,&nbsp;Jin Fang ,&nbsp;Rodney A. Badcock ,&nbsp;Nicholas J. Long ,&nbsp;Zhenan Jiang\",\"doi\":\"10.1016/j.supcon.2024.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature superconducting (HTS) technology provides an alternative approach to achieve compact transformers. Addressing AC loss in the HTS winding is crucial for HTS transformer applications. Most numerical AC loss studies on HTS transformers have neglected the influence of iron cores. This work carries out an AC loss study to explore the impact of an iron core on the HTS windings in a 3-phase HTS 1 MVA transformer coupled with it. AC loss simulations for the transformer winding both with and without the iron core are conducted by adopting the three-dimensional (3D) <em>T</em>-<em>A</em> homogenization method. When the iron core is incorporated, the saturation magnetic fields of iron materials, flux diverters (FDs) with different geometries, and variations in turn spacings in the LV winding composed of Roebel cables are considered to investigate their influence on the AC loss of the transformer winding. The inclusion of the iron core leads to a 1.2% increase in AC loss for the transformer winding while simulating at the rated current. We attribute this slight difference to the non-inductive winding structure of the transformer winding, where a strong magnetic field generated in the space between the LV and HV windings effectively shields the influence of the iron core.</p></div>\",\"PeriodicalId\":101185,\"journal\":{\"name\":\"Superconductivity\",\"volume\":\"10 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772830724000127/pdfft?md5=40e0c580771e6c6ccb0192cb0e47602f&pid=1-s2.0-S2772830724000127-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772830724000127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830724000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高温超导(HTS)技术为实现紧凑型变压器提供了另一种方法。解决 HTS 绕组中的交流损耗问题对于 HTS 变压器的应用至关重要。大多数关于 HTS 变压器的交流损耗数值研究都忽略了铁芯的影响。本研究开展了一项交流损耗研究,以探讨铁芯对与之耦合的三相 HTS 1 MVA 变压器中 HTS 绕组的影响。通过采用三维(3D)T-A 匀化方法,对有铁芯和无铁芯的变压器绕组进行了交流损耗模拟。在加入铁芯时,考虑了铁材料的饱和磁场、不同几何形状的磁通分流器 (FD),以及由罗贝尔电缆组成的低压绕组的匝间距变化,以研究它们对变压器绕组交流损耗的影响。在额定电流下进行模拟时,铁芯的加入导致变压器绕组的交流损耗增加了 1.2%。我们将这一微小差异归因于变压器绕组的无感绕组结构,在低压和高压绕组之间的空间中产生的强磁场有效屏蔽了铁芯的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core

High-temperature superconducting (HTS) technology provides an alternative approach to achieve compact transformers. Addressing AC loss in the HTS winding is crucial for HTS transformer applications. Most numerical AC loss studies on HTS transformers have neglected the influence of iron cores. This work carries out an AC loss study to explore the impact of an iron core on the HTS windings in a 3-phase HTS 1 MVA transformer coupled with it. AC loss simulations for the transformer winding both with and without the iron core are conducted by adopting the three-dimensional (3D) T-A homogenization method. When the iron core is incorporated, the saturation magnetic fields of iron materials, flux diverters (FDs) with different geometries, and variations in turn spacings in the LV winding composed of Roebel cables are considered to investigate their influence on the AC loss of the transformer winding. The inclusion of the iron core leads to a 1.2% increase in AC loss for the transformer winding while simulating at the rated current. We attribute this slight difference to the non-inductive winding structure of the transformer winding, where a strong magnetic field generated in the space between the LV and HV windings effectively shields the influence of the iron core.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信