Saptarshi Mukherjee, Johanna Schwartz, Emeraldo Baluyot, Tammy Chang, Joseph W. Tringe, Christopher M. Spadaccini, Maxim Shusteff
{"title":"实现微波体积增材制造:生成局部固化的多物理场计算模型","authors":"Saptarshi Mukherjee, Johanna Schwartz, Emeraldo Baluyot, Tammy Chang, Joseph W. Tringe, Christopher M. Spadaccini, Maxim Shusteff","doi":"10.1016/j.addlet.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><p>Visible light-based volumetric additive manufacturing (VAM) technology has recently enabled rapid 3D printing of optically transparent resins in a single step. There is now strong interest in extending the design space of VAM to include opaque, scattering and composite materials. Microwave energy can penetrate more deeply than visible light into a broader family of materials. For microwaves to be useful for VAM, however it is necessary to have a fundamental understanding of material dielectric properties, microwave field propagation and localization. Here we present a multi-physics microwave beam formed-thermal diffusion model that addresses these needs. The model demonstrates its ability to optimize power delivery and curing time to obtain better thermal control. We validate the model with a proof-of-concept single-antenna experimental system operating at 10 GHz that is able to cure a wide variety of materials, including both optically translucent and opaque epoxy resins loaded with conductive additives with a minimum curing spot of 5 mm. While available microwave hardware operating at 40 Watt power cures the resins in 2.5 min, the model estimates the ability to cure in as less as 6 s at 1 Kilowatt power levels. This computational model and experiments lay the foundation for a future multi-waveguide microwave-based VAM system.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000185/pdfft?md5=7b4fe11a7295609c23c72d714fda3af6&pid=1-s2.0-S2772369024000185-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards microwave volumetric additive manufacturing: Generation of a computational multi-physics model for localized curing\",\"authors\":\"Saptarshi Mukherjee, Johanna Schwartz, Emeraldo Baluyot, Tammy Chang, Joseph W. Tringe, Christopher M. Spadaccini, Maxim Shusteff\",\"doi\":\"10.1016/j.addlet.2024.100209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Visible light-based volumetric additive manufacturing (VAM) technology has recently enabled rapid 3D printing of optically transparent resins in a single step. There is now strong interest in extending the design space of VAM to include opaque, scattering and composite materials. Microwave energy can penetrate more deeply than visible light into a broader family of materials. For microwaves to be useful for VAM, however it is necessary to have a fundamental understanding of material dielectric properties, microwave field propagation and localization. Here we present a multi-physics microwave beam formed-thermal diffusion model that addresses these needs. The model demonstrates its ability to optimize power delivery and curing time to obtain better thermal control. We validate the model with a proof-of-concept single-antenna experimental system operating at 10 GHz that is able to cure a wide variety of materials, including both optically translucent and opaque epoxy resins loaded with conductive additives with a minimum curing spot of 5 mm. While available microwave hardware operating at 40 Watt power cures the resins in 2.5 min, the model estimates the ability to cure in as less as 6 s at 1 Kilowatt power levels. This computational model and experiments lay the foundation for a future multi-waveguide microwave-based VAM system.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000185/pdfft?md5=7b4fe11a7295609c23c72d714fda3af6&pid=1-s2.0-S2772369024000185-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Towards microwave volumetric additive manufacturing: Generation of a computational multi-physics model for localized curing
Visible light-based volumetric additive manufacturing (VAM) technology has recently enabled rapid 3D printing of optically transparent resins in a single step. There is now strong interest in extending the design space of VAM to include opaque, scattering and composite materials. Microwave energy can penetrate more deeply than visible light into a broader family of materials. For microwaves to be useful for VAM, however it is necessary to have a fundamental understanding of material dielectric properties, microwave field propagation and localization. Here we present a multi-physics microwave beam formed-thermal diffusion model that addresses these needs. The model demonstrates its ability to optimize power delivery and curing time to obtain better thermal control. We validate the model with a proof-of-concept single-antenna experimental system operating at 10 GHz that is able to cure a wide variety of materials, including both optically translucent and opaque epoxy resins loaded with conductive additives with a minimum curing spot of 5 mm. While available microwave hardware operating at 40 Watt power cures the resins in 2.5 min, the model estimates the ability to cure in as less as 6 s at 1 Kilowatt power levels. This computational model and experiments lay the foundation for a future multi-waveguide microwave-based VAM system.