对屈服应力流体振荡剪切测量滑移效应的流变-PIV 研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Esteban F. Medina-Bañuelos, B. M. Marín-Santibáñez, J. Pérez-González
{"title":"对屈服应力流体振荡剪切测量滑移效应的流变-PIV 研究","authors":"Esteban F. Medina-Bañuelos, B. M. Marín-Santibáñez, J. Pérez-González","doi":"10.1122/8.0000750","DOIUrl":null,"url":null,"abstract":"The influence of apparent slip on oscillatory shear measurements of a viscoplastic microgel [0.6 wt. % of poly(acrylic acid)] is analyzed by Couette and parallel-plate rheometry and particle image velocimetry (Rheo-PIV). We first provide direct evidence of a critical shear stress for the onset of slip of the microgel under oscillatory (σos) and nonoscillatory measurements (σs). Afterward, we describe the effect of slip on oscillatory measurements via waveforms, Bowditch–Lissajous curves, Fourier transform (FT) rheology, PIV, and as a sequence of physical processes (SPP). The effect of slip is mainly observed at low oscillating frequencies. For amplitudes of the oscillating stresses σ0 ≤ σos, the microgel exhibits linear viscoelastic behavior with in-phase strain response. For σos < σ0 ≤ yield stress (σy), slip introduces a phase shift in the strain response with a forward-tilted waveform and “mango” shape Bowditch–Lissajous curves. Meanwhile, FT rheology shows negligible even harmonics. The strain measured by the rheometer does not match the true strain determined by PIV in the presence of slip, resulting in waveforms that depend on how the displacement distribution is interpreted. This result indicates a break in the symmetry of the flow, that is, the microgel response no longer follows the imposed oscillation, which makes any attempt to correct oscillatory data for slip complex. This behavior arises from recoil of the slipping microgel after reaching its maximum displacement in a cycle. Finally, we provide an overall picture of the kinematics of the process of yielding in the presence of slip as an SPP.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"103 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheo-PIV study of slip effects on oscillatory shear measurements of a yield-stress fluid\",\"authors\":\"Esteban F. Medina-Bañuelos, B. M. Marín-Santibáñez, J. Pérez-González\",\"doi\":\"10.1122/8.0000750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of apparent slip on oscillatory shear measurements of a viscoplastic microgel [0.6 wt. % of poly(acrylic acid)] is analyzed by Couette and parallel-plate rheometry and particle image velocimetry (Rheo-PIV). We first provide direct evidence of a critical shear stress for the onset of slip of the microgel under oscillatory (σos) and nonoscillatory measurements (σs). Afterward, we describe the effect of slip on oscillatory measurements via waveforms, Bowditch–Lissajous curves, Fourier transform (FT) rheology, PIV, and as a sequence of physical processes (SPP). The effect of slip is mainly observed at low oscillating frequencies. For amplitudes of the oscillating stresses σ0 ≤ σos, the microgel exhibits linear viscoelastic behavior with in-phase strain response. For σos < σ0 ≤ yield stress (σy), slip introduces a phase shift in the strain response with a forward-tilted waveform and “mango” shape Bowditch–Lissajous curves. Meanwhile, FT rheology shows negligible even harmonics. The strain measured by the rheometer does not match the true strain determined by PIV in the presence of slip, resulting in waveforms that depend on how the displacement distribution is interpreted. This result indicates a break in the symmetry of the flow, that is, the microgel response no longer follows the imposed oscillation, which makes any attempt to correct oscillatory data for slip complex. This behavior arises from recoil of the slipping microgel after reaching its maximum displacement in a cycle. Finally, we provide an overall picture of the kinematics of the process of yielding in the presence of slip as an SPP.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"103 \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000750\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000750","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们通过库埃特流变仪、平行板流变仪和粒子图像测速仪(Rheo-PIV)分析了表观滑移对粘塑性微凝胶[0.6 wt. % 聚丙烯酸]振荡剪切测量的影响。我们首先提供了在振荡测量(σos)和非振荡测量(σs)下微凝胶开始滑移的临界剪切应力的直接证据。随后,我们通过波形、鲍迪奇-利萨如斯曲线、傅立叶变换流变学、PIV 以及物理过程序列 (SPP) 来描述滑移对振荡测量的影响。滑移的影响主要体现在低振荡频率上。在振荡应力振幅 σ0 ≤ σos 时,微凝胶表现出线性粘弹性行为,具有同相应变响应。当 σos < σ0 ≤ 屈服应力(σy)时,滑移会在应变响应中引入相移,出现前倾波形和 "芒果 "形状的鲍迪奇-利萨尤斯曲线。同时,FT 流变仪显示的偶次谐波可忽略不计。在存在滑移的情况下,流变仪测得的应变与 PIV 测得的真实应变不一致,导致波形取决于如何解释位移分布。这一结果表明流动的对称性被打破,也就是说,微凝胶的响应不再遵循强加的振荡,这使得任何针对滑移校正振荡数据的尝试都变得复杂。这种行为源于滑动微凝胶在一个周期内达到最大位移后的反冲。最后,我们以 SPP 的形式提供了存在滑移时屈服过程的运动学全貌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheo-PIV study of slip effects on oscillatory shear measurements of a yield-stress fluid
The influence of apparent slip on oscillatory shear measurements of a viscoplastic microgel [0.6 wt. % of poly(acrylic acid)] is analyzed by Couette and parallel-plate rheometry and particle image velocimetry (Rheo-PIV). We first provide direct evidence of a critical shear stress for the onset of slip of the microgel under oscillatory (σos) and nonoscillatory measurements (σs). Afterward, we describe the effect of slip on oscillatory measurements via waveforms, Bowditch–Lissajous curves, Fourier transform (FT) rheology, PIV, and as a sequence of physical processes (SPP). The effect of slip is mainly observed at low oscillating frequencies. For amplitudes of the oscillating stresses σ0 ≤ σos, the microgel exhibits linear viscoelastic behavior with in-phase strain response. For σos < σ0 ≤ yield stress (σy), slip introduces a phase shift in the strain response with a forward-tilted waveform and “mango” shape Bowditch–Lissajous curves. Meanwhile, FT rheology shows negligible even harmonics. The strain measured by the rheometer does not match the true strain determined by PIV in the presence of slip, resulting in waveforms that depend on how the displacement distribution is interpreted. This result indicates a break in the symmetry of the flow, that is, the microgel response no longer follows the imposed oscillation, which makes any attempt to correct oscillatory data for slip complex. This behavior arises from recoil of the slipping microgel after reaching its maximum displacement in a cycle. Finally, we provide an overall picture of the kinematics of the process of yielding in the presence of slip as an SPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信