{"title":"用于连续流化学的 3D 打印技术的最新进展","authors":"Mireia Benito Montaner, Stephen T. Hilton","doi":"10.1016/j.cogsc.2024.100923","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous flow processes have distinct advantages over batch chemistry when it comes to long-term sustainability in the chemical industry, and they are widely acknowledged as being a greener approach to synthesis. However, despite this, the high costs and complexity of current commercial systems act as barriers to entry in this key technology for new entrants, stymieing chemists transition to continuous flow. In this overview, we discuss how 3D printing has emerged as a transformative force for chemists seeking to move into continuous flow. Alongside the physical equipment and microreactors, recent reports on incorporation of catalysts into 3D-printed reactors offers great promise for recyclability and environmental sustainability and the combined convergence of 3D printing and catalysis represents a transformative shift toward environmentally conscious, efficient, and standardized chemical processes in continuous flow.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100923"},"PeriodicalIF":9.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000440/pdfft?md5=e399ecaa73ac2f053fe99f59344973a3&pid=1-s2.0-S2452223624000440-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in 3D printing for continuous flow chemistry\",\"authors\":\"Mireia Benito Montaner, Stephen T. Hilton\",\"doi\":\"10.1016/j.cogsc.2024.100923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuous flow processes have distinct advantages over batch chemistry when it comes to long-term sustainability in the chemical industry, and they are widely acknowledged as being a greener approach to synthesis. However, despite this, the high costs and complexity of current commercial systems act as barriers to entry in this key technology for new entrants, stymieing chemists transition to continuous flow. In this overview, we discuss how 3D printing has emerged as a transformative force for chemists seeking to move into continuous flow. Alongside the physical equipment and microreactors, recent reports on incorporation of catalysts into 3D-printed reactors offers great promise for recyclability and environmental sustainability and the combined convergence of 3D printing and catalysis represents a transformative shift toward environmentally conscious, efficient, and standardized chemical processes in continuous flow.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"47 \",\"pages\":\"Article 100923\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000440/pdfft?md5=e399ecaa73ac2f053fe99f59344973a3&pid=1-s2.0-S2452223624000440-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000440\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000440","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
就化学工业的长期可持续性而言,连续流工艺与间歇式化学相比具有明显的优势,而且被公认为是一种更环保的合成方法。然而,尽管如此,目前商业系统的高成本和复杂性仍成为新进入者进入这一关键技术领域的障碍,阻碍了化学家向连续流过渡。在本综述中,我们将讨论 3D 打印如何成为化学家向连续流过渡的变革力量。除了物理设备和微反应器之外,最近关于将催化剂融入 3D 打印反应器的报道也为可回收性和环境可持续性带来了巨大希望。
Recent advances in 3D printing for continuous flow chemistry
Continuous flow processes have distinct advantages over batch chemistry when it comes to long-term sustainability in the chemical industry, and they are widely acknowledged as being a greener approach to synthesis. However, despite this, the high costs and complexity of current commercial systems act as barriers to entry in this key technology for new entrants, stymieing chemists transition to continuous flow. In this overview, we discuss how 3D printing has emerged as a transformative force for chemists seeking to move into continuous flow. Alongside the physical equipment and microreactors, recent reports on incorporation of catalysts into 3D-printed reactors offers great promise for recyclability and environmental sustainability and the combined convergence of 3D printing and catalysis represents a transformative shift toward environmentally conscious, efficient, and standardized chemical processes in continuous flow.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.