四元数及其伴随函数的图形表示法

Stephen C. Pearson
{"title":"四元数及其伴随函数的图形表示法","authors":"Stephen C. Pearson","doi":"10.33140/jeee.03.02.12","DOIUrl":null,"url":null,"abstract":"In this particular paper we will demonstrate that, by invoking the concept of a ‘quaternionic quasicomplex component’, it is possible to graphically represent all quaternions and their concomitant functions with the aid of specific quaternionic analogues of the Argand diagram from complex variable analysis, bearing in mind that the algebraic and analytic properties of the aforesaid numbers and functions have been comprehensively elucidated in the author’s antecedent papers [2]; [3]; [4] & [5]","PeriodicalId":515574,"journal":{"name":"Journal of Electrical Electronics Engineering","volume":"80 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphical Representation of Quaternions and Their Concomitant Functions\",\"authors\":\"Stephen C. Pearson\",\"doi\":\"10.33140/jeee.03.02.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this particular paper we will demonstrate that, by invoking the concept of a ‘quaternionic quasicomplex component’, it is possible to graphically represent all quaternions and their concomitant functions with the aid of specific quaternionic analogues of the Argand diagram from complex variable analysis, bearing in mind that the algebraic and analytic properties of the aforesaid numbers and functions have been comprehensively elucidated in the author’s antecedent papers [2]; [3]; [4] & [5]\",\"PeriodicalId\":515574,\"journal\":{\"name\":\"Journal of Electrical Electronics Engineering\",\"volume\":\"80 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jeee.03.02.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jeee.03.02.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们将证明,通过引用 "四元准复数分量 "的概念,可以借助复变分析中阿甘德图的特定四元类似物,以图形表示所有四元数及其伴随函数,同时牢记上述数和函数的代数和解析性质已在作者的前几篇论文[2]; [3]; [4] & [5]中作了全面阐释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphical Representation of Quaternions and Their Concomitant Functions
In this particular paper we will demonstrate that, by invoking the concept of a ‘quaternionic quasicomplex component’, it is possible to graphically represent all quaternions and their concomitant functions with the aid of specific quaternionic analogues of the Argand diagram from complex variable analysis, bearing in mind that the algebraic and analytic properties of the aforesaid numbers and functions have been comprehensively elucidated in the author’s antecedent papers [2]; [3]; [4] & [5]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信