Edwin Peralta-Garcia, Juan Quevedo-Monsalbe, Victor Tuesta-Monteza, Juan Arcila-Diaz
{"title":"使用机器学习检测网络微服务中的结构化查询语言注入","authors":"Edwin Peralta-Garcia, Juan Quevedo-Monsalbe, Victor Tuesta-Monteza, Juan Arcila-Diaz","doi":"10.3390/informatics11020015","DOIUrl":null,"url":null,"abstract":"Structured Query Language (SQL) injections pose a constant threat to web services, highlighting the need for efficient detection to address this vulnerability. This study compares machine learning algorithms for detecting SQL injections in web microservices trained using a public dataset of 22,764 records. Additionally, a software architecture based on the microservices approach was implemented, in which trained models and the web application were deployed to validate requests and detect attacks. A literature review was conducted to identify types of SQL injections and machine learning algorithms. The results of random forest, decision tree, and support vector machine were compared for detecting SQL injections. The findings show that random forest outperforms with a precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%. In contrast, decision tree achieved a precision of 92%, a recall of 86%, and an F1 score of 97%. Support Vector Machine (SVM) presented an accuracy, precision, and F1 score of 98%, with a recall of 97%.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"103 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Structured Query Language Injections in Web Microservices Using Machine Learning\",\"authors\":\"Edwin Peralta-Garcia, Juan Quevedo-Monsalbe, Victor Tuesta-Monteza, Juan Arcila-Diaz\",\"doi\":\"10.3390/informatics11020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured Query Language (SQL) injections pose a constant threat to web services, highlighting the need for efficient detection to address this vulnerability. This study compares machine learning algorithms for detecting SQL injections in web microservices trained using a public dataset of 22,764 records. Additionally, a software architecture based on the microservices approach was implemented, in which trained models and the web application were deployed to validate requests and detect attacks. A literature review was conducted to identify types of SQL injections and machine learning algorithms. The results of random forest, decision tree, and support vector machine were compared for detecting SQL injections. The findings show that random forest outperforms with a precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%. In contrast, decision tree achieved a precision of 92%, a recall of 86%, and an F1 score of 97%. Support Vector Machine (SVM) presented an accuracy, precision, and F1 score of 98%, with a recall of 97%.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"103 \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/informatics11020015\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics11020015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detecting Structured Query Language Injections in Web Microservices Using Machine Learning
Structured Query Language (SQL) injections pose a constant threat to web services, highlighting the need for efficient detection to address this vulnerability. This study compares machine learning algorithms for detecting SQL injections in web microservices trained using a public dataset of 22,764 records. Additionally, a software architecture based on the microservices approach was implemented, in which trained models and the web application were deployed to validate requests and detect attacks. A literature review was conducted to identify types of SQL injections and machine learning algorithms. The results of random forest, decision tree, and support vector machine were compared for detecting SQL injections. The findings show that random forest outperforms with a precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%. In contrast, decision tree achieved a precision of 92%, a recall of 86%, and an F1 score of 97%. Support Vector Machine (SVM) presented an accuracy, precision, and F1 score of 98%, with a recall of 97%.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico