{"title":"RNA 组测序是帮助对剪接变异进行分类以进行临床肿瘤基因诊断的有效工具","authors":"Maud Privat, Flora Ponelle-Chachuat, Sandrine Viala, Nancy Uhrhammer, Mathis Lepage, Anne Cayre, Yannick Bidet, Yves-Jean Bignon, Mathilde Gay-Bellile, Mathias Cavaillé","doi":"10.1155/2024/4830045","DOIUrl":null,"url":null,"abstract":"<p>Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: <i>PTEN</i> c.206+6T>G, <i>MLH1</i> c.791-489_791-20del, <i>BRCA2</i> c.68-8_68-7delinsAA, and <i>MSH2</i> c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA Panel Sequencing Is an Effective Tool to Help Classify Splice Variants for Clinical Oncogenetic Diagnosis\",\"authors\":\"Maud Privat, Flora Ponelle-Chachuat, Sandrine Viala, Nancy Uhrhammer, Mathis Lepage, Anne Cayre, Yannick Bidet, Yves-Jean Bignon, Mathilde Gay-Bellile, Mathias Cavaillé\",\"doi\":\"10.1155/2024/4830045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: <i>PTEN</i> c.206+6T>G, <i>MLH1</i> c.791-489_791-20del, <i>BRCA2</i> c.68-8_68-7delinsAA, and <i>MSH2</i> c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4830045\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4830045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RNA Panel Sequencing Is an Effective Tool to Help Classify Splice Variants for Clinical Oncogenetic Diagnosis
Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: PTEN c.206+6T>G, MLH1 c.791-489_791-20del, BRCA2 c.68-8_68-7delinsAA, and MSH2 c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.