Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta
{"title":"利用多时卫星图像分析气候变化引起的土地利用土地覆盖时空变化","authors":"Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta","doi":"10.2166/wcc.2024.675","DOIUrl":null,"url":null,"abstract":"\n This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"173 ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change-induced spatiotemporal variations of land use land cover by using multitemporal satellite imagery analysis\",\"authors\":\"Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta\",\"doi\":\"10.2166/wcc.2024.675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"173 \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Climate change-induced spatiotemporal variations of land use land cover by using multitemporal satellite imagery analysis
This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.