Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta
{"title":"利用多时卫星图像分析气候变化引起的土地利用土地覆盖时空变化","authors":"Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta","doi":"10.2166/wcc.2024.675","DOIUrl":null,"url":null,"abstract":"\n This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change-induced spatiotemporal variations of land use land cover by using multitemporal satellite imagery analysis\",\"authors\":\"Izhar Ahmad, Muhammad Waseem, Sadaquat Hussain, M. Leta\",\"doi\":\"10.2166/wcc.2024.675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.675\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.675","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Climate change-induced spatiotemporal variations of land use land cover by using multitemporal satellite imagery analysis
This study examines Islamabad's landscape changes over four decades, attributing land degradation to shifts in land use and cover. Using Landsat imagery from 1980 to 2023, it analyzes urban growth in five categories. By employing the normalized difference vegetation index (NDVI) and normalized difference built-up index, it notes built-up areas expanding to 61% by 2023, agricultural land contraction, and fluctuating forest cover. Water bodies and bare land decrease significantly. With high accuracy values, NDVI fluctuates from +0.4523 in 1980 to +0.1596 in 2010, rebounding to +0.4422. Fluctuations in barren soil, vegetation, and built-up areas potentially contribute to temperature and rainfall changes. The study explores LULC and land surface temperature correlation. Surveyed respondents (755) express concerns about environmental changes, anticipating reduced rainfall and increased drought. Valuable for sustainable development goals, the study informs policy formulation for effective urban planning and land use control.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.