{"title":"利用机器学习估算 AlCoCrNiFe 高熵合金的晶格热导率","authors":"Jie Lu, Xiaona Huang, Y. Yue","doi":"10.1063/5.0201042","DOIUrl":null,"url":null,"abstract":"The lattice thermal conductivity stands as a pivotal thermos-physical parameter of high-entropy alloys; nonetheless, achieving precise predictions of the lattice thermal conductivity for high-entropy alloys poses a formidable challenge due to their complex composition and structure. In this study, machine learning models were built to predict the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy based on molecular dynamic simulations. Our model shows high accuracy with R2, mean absolute percentage error, and root mean square error of the test set is 0.91, 0.031, and 1.128 W m−1 k−1, respectively. In addition, a high-entropy alloy with low a lattice thermal conductivity of 2.06 W m−1 k−1 (Al8Cr30Co19Ni20Fe23) and with a high lattice thermal conductivity of 5.29 W m−1 k−1 (Al0.5Cr28.5Co25Ni25.5Fe20.5) was successfully predicted, which shows good agreement with the results from molecular dynamics simulations. The mechanisms of the thermal conductivity divergence are further explained through their phonon density of states and elastic modulus. The established model provides a powerful tool for developing high-entropy alloys with the desired properties.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning\",\"authors\":\"Jie Lu, Xiaona Huang, Y. Yue\",\"doi\":\"10.1063/5.0201042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lattice thermal conductivity stands as a pivotal thermos-physical parameter of high-entropy alloys; nonetheless, achieving precise predictions of the lattice thermal conductivity for high-entropy alloys poses a formidable challenge due to their complex composition and structure. In this study, machine learning models were built to predict the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy based on molecular dynamic simulations. Our model shows high accuracy with R2, mean absolute percentage error, and root mean square error of the test set is 0.91, 0.031, and 1.128 W m−1 k−1, respectively. In addition, a high-entropy alloy with low a lattice thermal conductivity of 2.06 W m−1 k−1 (Al8Cr30Co19Ni20Fe23) and with a high lattice thermal conductivity of 5.29 W m−1 k−1 (Al0.5Cr28.5Co25Ni25.5Fe20.5) was successfully predicted, which shows good agreement with the results from molecular dynamics simulations. The mechanisms of the thermal conductivity divergence are further explained through their phonon density of states and elastic modulus. The established model provides a powerful tool for developing high-entropy alloys with the desired properties.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0201042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0201042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
晶格热导率是高熵合金的一个关键热物理参数;然而,由于高熵合金的成分和结构复杂,要精确预测其晶格热导率是一项艰巨的挑战。本研究基于分子动力学模拟,建立了机器学习模型来预测 AlCoCrNiFe 高熵合金的晶格热导率。我们的模型具有很高的准确性,测试集的 R2、平均绝对百分比误差和均方根误差分别为 0.91、0.031 和 1.128 W m-1 k-1。此外,还成功预测了低晶格热导率为 2.06 W m-1 k-1 (Al8Cr30Co19Ni20Fe23)和高晶格热导率为 5.29 W m-1 k-1 (Al0.5Cr28.5Co25Ni25.5Fe20.5)的高熵合金,这与分子动力学模拟的结果显示出良好的一致性。通过声子态密度和弹性模量,进一步解释了热导率差异的机理。所建立的模型为开发具有所需性能的高熵合金提供了强有力的工具。
Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning
The lattice thermal conductivity stands as a pivotal thermos-physical parameter of high-entropy alloys; nonetheless, achieving precise predictions of the lattice thermal conductivity for high-entropy alloys poses a formidable challenge due to their complex composition and structure. In this study, machine learning models were built to predict the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy based on molecular dynamic simulations. Our model shows high accuracy with R2, mean absolute percentage error, and root mean square error of the test set is 0.91, 0.031, and 1.128 W m−1 k−1, respectively. In addition, a high-entropy alloy with low a lattice thermal conductivity of 2.06 W m−1 k−1 (Al8Cr30Co19Ni20Fe23) and with a high lattice thermal conductivity of 5.29 W m−1 k−1 (Al0.5Cr28.5Co25Ni25.5Fe20.5) was successfully predicted, which shows good agreement with the results from molecular dynamics simulations. The mechanisms of the thermal conductivity divergence are further explained through their phonon density of states and elastic modulus. The established model provides a powerful tool for developing high-entropy alloys with the desired properties.